Despite the use of highly active antiretroviral therapy (HAART), neuronal cell death remains a problem that is frequently found in the brains of HIV-1-infected patients. HAART has successfully prevented many of the former end-stage complications of AIDS, however, with increased survival times, the prevalence of minor HIV-1 associated cognitive impairment appears to be rising among AIDS patients. Further, HIV-1 associated dementia (HAD) is still prevalent in treated patients as well as attenuated forms of HAD and CNS opportunistic disorders. HIV-associated cognitive impairment correlates with the increased presence in the CNS of activated, though not necessarily HIV-1-infected, microglia and CNS macrophages. This suggests that indirect mechanisms of neuronal injury and loss/death occur in HIV/AIDS as a basis for dementia since neurons are not themselves productively infected by HIV-1. In this review, we discussed the symptoms and causes leading to HAD. Outcome from this review will provide new information regarding mechanisms of neuronal loss in AIDS patients. Definition and causesDementia cannot be considered as a disease by itself but it is the term used to describe a set of symptoms resulting from damages and disorders affecting the brain. These symptoms can be caused by a multitude of diseases and depend upon the specific brain regions affected. These symptoms appear as a variety of cognitive, behavioral, affective, motor, and psychiatric disorders. Dementia can be caused by a variety of diseases, known as neurodegenerative diseases resulting from protein aggregation in the brain [1]. These diseases include Alzheimer's, Lewy bodies, Huntington and Parkinson [1]. Infectious diseases affecting the central nervous system (CNS) may lead to dementia. These infections can be caused by different agents such as: abnormal protein in prion diseases (Creutzfeldt-Jakob disease), bacteria in syphilis and borrelia, parasites in toxoplasmosis, cryptococcosis and neurocysticercosis [2], however viral agents are the leading cause of infection related dementia. Among the viruses infecting the brain, human immunodeficiency virus type 1 (HIV-1) is the most common cause of dementia, other CNS viral infection implying herpes simplex virus type I, Varicella zoster virus, cytomegalovirus, Epstein-Barr virus cause encephalitis and severe brain dysfunction. The collection of viral agent infecting the CNS and producing viral encephalitis includes also arboviruses, rabies viruses, polyomaviruses and enteroviruses [3]. Finally, dementia could also be caused by vascular disorders (e.g. multipleinfarct dementia), drug addiction, hydrocephalus, and injury or brain tumors [4,5]. Despite the variability of
Background: p53 plays an important role in many areas of cellular physiology and biology, ranging from cellular development and differentiation to cell cycle arrest and apoptosis. Many of its functions are attributed to its role in assuring proper cellular division. However, since the establishment of its role in cell cycle arrest, damage repair, and apoptosis (thus also establishing its importance in cancer development), numerous reports have demonstrated additional functions of p53 in various cells. In particular, p53 appears to have important functions as it relates to neurodegeneration and synaptic plasticity. Objective: In this review, we will address p53 functions as it relates to various neurodegenerative diseases, mainly its implications in the development of HIV-associated neurocognitive disorders. Conclusion: p53 plays a pivotal role in the development of neurodegenerative diseases through its interaction with cellular factors, viral factors, and/or small RNAs that have the ability to promote the development of these diseases. Hence, inhibition of p53 may present an ideal target to restore neuronal functions.
Movements of different body segments may be combined in different ways to achieve the same motor goal. How this is accomplished by the nervous system was investigated by having subjects make fast pointing movements with the arm in combination with a forward bending of the trunk that was unexpectedly blocked in some trials. Subjects moved their hand above the surface of a table without vision from an initial position near the midline of the chest to remembered targets placed within the reach of the arm in either the ipsi- or contralateral workspace. In experiment 1, subjects were instructed to make fast arm movements to the target without corrections whether or not the trunk was arrested. Only minor changes were found in the hand trajectory and velocity profile in response to the trunk arrest, and these changes were seen only late in the movement. In contrast, the patterns of the interjoint coordination substantially changed in response to the trunk arrest, suggesting the presence of compensatory arm-trunk coordination minimizing the deflections from the hand trajectory regardless of whether the trunk is recruited or mechanically blocked. Changes in the arm interjoint coordination in response to the trunk arrest could be detected kinematically at a minimal latency of 50 ms. This finding suggests a rapid reflex compensatory mechanism driven by vestibular and/or proprioceptive afferent signals. In experiment 2, subjects were required, as soon as they perceived the trunk arrest, to change the hand motion to the same direction as that of the trunk. Under this instruction, subjects were able to initiate corrections only after the hand approached or reached the final position. Thus, centrally mediated compensatory corrections triggered in response to the trunk arrest were likely to occur too late to maintain the observed invariant hand trajectory in experiment 1. In experiment 3, subjects produced similar pointing movements, but to a target that moved together with the trunk. In these body-oriented pointing movements, the hand trajectories from trials in which the trunk was moving or arrested were substantially different. The same trajectories represented in a relative frame of reference moving with the trunk were virtually identical. We conclude that hand trajectory invariance can be produced in an external spatial (experiment 1) or an internal trunk-centered (experiment 3) frame of reference. The invariance in the external frame of reference is accomplished by active compensatory changes in the arm joint angles nullifying the influence of the trunk motion on the hand trajectory. We suggest that to make a transition to the internal frame of reference, control systems suppress this compensation. One of the hypotheses opened to further experimental testing is that the integration of additional (trunk) degrees of freedom into movement is based on afferent (proprioceptive, vestibular) signals stemming from the trunk motion and transmitted to the arm muscles.
The tumor suppressor p53 is an important cellular protein, which controls cell cycle progression. Phosphorylation is one of the mechanisms by which p53 is regulated. Here we report the interaction of p53 with another key regulator, cdk9, which together with cyclin T1 forms the positive transcription elongation complex, p-TEFb. This complex cooperates with the HIV-1 Tat protein to cause the phosphorylation of the carboxyl terminal domain (CTD) of RNA polymerase II and this facilitates the elongation of HIV-1 transcription. We demonstrate that cdk9 phosphorylates p53 on serine 392 through their direct physical interaction. Results from protein-protein interaction assays revealed that cdk9 interacts with the C-terminal domain (aa 361-393) of p53, while p53 interacts with the N-terminal domain of cdk9. Transfection and protein binding assays (EMSA and ChIP) demonstrated the ability of p53 to bind and activate the cdk9 promoter. Interestingly, cdk9 phosphorylates serine 392 of p53, which could be also phosphorylated by casein kinase II. Kinase assays demonstrated that cdk9 phosphorylates p53 independently of CKII. These studies demonstrate the existence of a feedback-loop between p53 and cdk9, pinpointing a novel mechanism by which p53 regulates the basal transcriptional machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.