Steel-concrete-steel (SCS) sandwich panels are manufactured with two thin high-strength steel plates and a moderately low-density and low-strength thick concrete core. In this study, 24 specimens were produced and tested. In these specimens, a new stud-bolt connector was used to regulate its shear behaviour in sandwich panels. The bolts’ diameter, concrete core’s thickness and bolts’ spacing were the parameters under analysis. Furthermore, the concrete core was manufactured with normal-strength concrete and steel fibres concrete (SFC). Steel fibres were added at 1% by volume. In addition, the recycled coarse aggregate was used at 100% in terms of mass instead of natural coarse aggregate. Therefore, the ultimate bearing capability and slip of the sandwich panels were recorded, and the failure mode and ductility index of the specimens were evaluated. A new formula was also established to determine the shear strength of SCS panels with this kind of connectors. According to this study, increasing the diameter of the stud-bolts or using SFC in sandwich panels improve their shear strength and ductility ratio.
This paper investigates a vibratory system that employs Hertzian contact theory in terms of free vibration. Nonlinear impact dampers are created by using a spring, mass, and viscous damper model. The model is simulated in MATLAB software using the DAS method as a proper simulation framework. The Taguchi method is used to examine the efficacy of impact dampers for controlling structural vibrations of the structure. It is demonstrated that the optimal factors obtained can effectively suppress the structure’s unwanted vibrations. The analysis of variance is also used to indicate the most influential factor of dampers to demonstrate their ability to quench vibrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.