In this paper, we report Q-factor over 1 million on both n = 2 wineglass modes, and high-frequency symmetry ( f/ f ) of 132 ppm on wafer-level microglassblown 3-D fused silica wineglass resonators at a compact size of 7-mm diameter and center frequency of 105 kHz. In addition, we demonstrate for the first time, out-of-plane capacitive transduction on microelectromechanical systems wineglass resonators. High Q-factor is enabled by a high aspect ratio, self-aligned glassblown stem structure, careful surface treatment of the perimeter area, and low internal loss fused silica material. Electrostatic transduction is enabled by detecting the spatial deformation of the 3-D wineglass structure using a new out-of-plane electrode architecture. Out-of-plane electrode architecture enables the use of sacrificial layers to define the capacitive gaps and 10 μm capacitive gaps have been demonstrated on a 7-mm shell, resulting in over 9 pF of active capacitance within the device. Microglassblowing may enable batch-fabrication of high-performance fused silica wineglass gyroscopes at a significantly lower cost than their precision-machined macroscale counterparts.[
2014-0251]Index Terms-Micro-glassblowing, 3-D MEMS, wineglass resonator, degenerate mode gyroscope, fused silica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.