Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish's skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score −8.5 kcal/mol, −8.0 kcal/mol and −7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein.
Maternally derived thyroid hormones (THs) deposited in yolk promote fish embryogenesis and survival, and understanding early regulatory mechanisms could lead to improved seedstock production. We have tested the hypothesis that some thyroid actions may be mediated by insulin‐like growth factor I (IGF‐1), another promoter of embryo development. Differentiation and performance were assessed in embryos treated with THs in the presence or absence of an IGF‐1 receptor blocking peptide. Treatment with the TH triiodothyronine (T3) promoted IGF‐1 gene expression at days 1 and 5, and advanced swim bladder and eye development, but blocking the IGF‐1 receptor eliminated the swim bladder and eye effects. Growth and survival at 1 week of age were impaired by the IGF‐1 receptor blocking peptide alone, but concurrent treatment with T3 partially restored these indices. Our results confirm interaction of T3 and IGF‐1 regulatory signalling in zebrafish embryogenesis and transduction by IGF‐1 of thyroid‐driven swim bladder and eye maturation.
Minichromosome maintenance protein 2 (MCM2) is a highly conserved protein from the MCM protein family that plays an important role in eukaryotic DNA replication as well as in cell cycle progression. In addition, it maintains the ploidy level consistency in eukaryotic cells, hence, mutations or alteration of this protein could result in the disintegration of the fine-tuned molecular machinery that can lead to uncontrolled cell proliferation. Moreover, MCM2 has been found to be an important marker for progression and prognosis in different cancers. Therefore, we aimed to analyze the MCM2 expression and the associated outcome in breast cancer (BC) patients based on the publicly available online databases. In this study, server-based gene expression analyses indicate the upregulation of MCM2 ( p < 10 −6 ; fold change>2.0) in various BC subtypes as compared to the respective normal tissues. Besides, the evaluation of histological sections from healthy and cancer tissues showed strong staining signals indicating higher expression of MCM2 protein. The overexpression of MCM2 was significantly correlated to promoter methylation and was related to patients' clinical features. Further, mutation analysis suggested missense as the predominant type of mutation (71.4%) with 18 copy-number alterations and 0.2% mutation frequency in the MCM2 gene. This study revealed a significant correlation (Cox p ≤ 0.05) between the higher MCM2 expression and lower patient survival. Finally, we identified the co-expressed genes with gene ontological features and signaling pathways associated in BC development. We believe that this study will provide a basis for MCM2 to be a significant biomarker for human BC prognosis.
The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure–activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.