This study proposes a two-layer hierarchical control to actualize optimal total harmonic distortion (THD) compensation in different buses of parallel-connected inverters in islanded microgrids which had not been studied so far. The proposed secondary layer is used to realize THD compensation of sensitive load bus (SLB) and make distributed generators (DGs) distribute the compensating efforts between them according to their rated capacity. It is noteworthy that improving THD at the SLB can lead to an increase in THD at local buses and/or DG terminals. Although the THD limitations of these buses are not as strict as the THD limitation of SLB, it is necessary to control them within their allowed range. This important problem is not well studied in the literature. A novel complementary part is designed and added to the secondary control to tune the compensation portion of each DG while the THD limitations in DG terminals and local buses are considered. The proposed method actualizes a multi-level voltage quality control in multi-bus islanded microgrids with parallel DGs through a simple yet effective solution. Furthermore, considering the DGs peak current limitation is added to the controller and a method for calculating this peak value is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.