This study presents a new approach to sensor placement strategy in emitter localisation problems based on time difference of arrival measurements. The method addresses a flexible procedure which is capable of positioning the sensors in constrained environments or non-stationary situations where the positions of the sensors are restricted to certain parts of the space and/or need to be changed repeatedly. This method is sequential and has lower computation burden compared to other methods. The validity of the proposed algorithm is assessed by many different numerical scenarios and the results verify its proper operation.
This paper examines the problem of determining optimal sensors trajectories for localization of a moving radio source based on Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) measurements in situations in which sensors are constrained both in their movements and regions of operation. By considering the movement of the source and constrained movement of the sensors, a constraint problem is formed which is solved to determine optimal trajectories of the sensors for source tracking. The validity of the proposed algorithm is assessed by two different simulation scenarios and the results verify its proper operation with estimation error decreasing in consecutive steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.