Driver identification is a momentous field of modern decorated vehicles in the perspective of the controller area network (CAN-Bus). Many conventional systems are used to identify the driver. One step ahead, most of the researchers use sensor data of CAN-Bus but there are some difficulties because of the variation of a protocol of different models of vehicle. We aim to identify the driver through supervised learning algorithms based on driving behavior analysis. To identify the driver, a driver verification technique is proposed that evaluate driving pattern using the measurement of CAN sensor data. In this paper on-board diagnostic (OBD-II) is used to capture the data from CAN-Bus sensor and the sensors are listed under SAE J1979 statement. According to the service of OBD-II drive identification is possible. However, we have gained two types of accuracy on a full data set with 10 drivers and a partial data set with two drivers. The accuracy is good with less number of drivers compared to a higher number of drivers. We have achieved statistically significant results in terms of accuracy in contrast to the baseline algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.