In this paper, at first, a lattice Boltzmann method for binary fluids, which is applicable at low viscosity values, is developed. The presented scheme is extension of the free-energy-based approach to a multi-relaxation-time collision model. Various benchmark problems such as the well-known Laplace law for stationary bubbles and capillary-wave test are conducted for validation. As an appealing application, instability of a rising bubble in an enclosed duct is studied and irregular behavior of the bubble is observed at very high Reynolds numbers. In order to highlight its capability to simulate high Reynolds number flows, which is a challenge for many other models, a typical wobbling bubble in the turbulent regime is simulated successfully. Then, in the context of phase-field modeling, a lattice Boltzmann method is proposed for multiphase flows with a density contrast. Unlike most of the previous models based on the phase-field theory, the proposed scheme not only tolerates very low viscosity values but also emerges as a promising method for investigation of two-phase flow problems with moderate density ratios. In addition to comparison to the kinetic-based model, the proposed approach is further verified by judging against the theoretical solutions and experimental data. Various case studies including the rising bubble, droplet splashing on a wet surface, and falling droplet are conducted to show the versatility of the presented lattice Boltzmann model.
In this article, a method based on the multiphase lattice Boltzmann framework is presented which is applicable to liquid-vapor phase-change phenomena. Both liquid and vapor phases are assumed to be incompressible. For phase changes occurring at the phase interface, the divergence-free condition of the velocity field is no longer satisfied due to the gas volume generated by vaporization or fluid volume generated by condensation. Thus, we extend a previous model by a suitable equation to account for the finite divergence of the velocity field within the interface region. Furthermore, the convective Cahn-Hilliard equation is extended to take into account vaporization effects. In a first step, a D1Q3 LB model is constructed and validated against the analytical solution of a one-dimensional Stefan problem for different density ratios. Finally the model is extended to two dimensions (D2Q9) to simulate droplet evaporation. We demonstrate that the results obtained by this approach are in good agreement with theory.
In the present article, we extend and generalize our previous article [H. Safari, M. H. Rahimian, and M. Krafczyk, Phys. Rev. E 88, 013304 (2013)] to include the gradient of the vapor concentration at the liquid-vapor interface as the driving force for vaporization allowing the evaporation from the phase interface to work for arbitrary temperatures. The lattice Boltzmann phase-field multiphase modeling approach with a suitable source term, accounting for the effect of the phase change on the velocity field, is used to solve the two-phase flow field. The modified convective Cahn-Hilliard equation is employed to reconstruct the dynamics of the interface topology. The coupling between the vapor concentration and temperature field at the interface is modeled by the well-known Clausius-Clapeyron correlation. Numerous validation tests including one-dimensional and two-dimensional cases are carried out to demonstrate the consistency of the presented model. Results show that the model is able to predict the flow features around and inside an evaporating droplet quantitatively in quiescent as well as convective environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.