Exposure to extremely low-frequency electromagnetic fields may induce constant modulation in neuronal plasticity. In recent years, tremendous efforts have been made to design a suitable strategy for enhancing adult neurogenesis, which seems to be deterred due to brain senescence and several neurodegenerative diseases. In this study, we evaluated the effects of ELF-EMF on neurogenesis and memory, following treatment with trimethyltin chloride (TMT) as a neurotoxicant. The mice in all groups (n = 56) were injected with BrdU during the experiment for seven consecutive days to label newborn cells. Spatial memory was assessed by the Morris water maze (MWM) test. By the end of the experiment, neurogenesis and neuronal differentiation were assessed in the hippocampus, using immunohistochemistry and Western blot analysis. Based on the findings, exposure to ELF-EMF enhanced spatial learning and memory in the MWM test. ELF-EMF exposure significantly enhanced the number of BrdU+ and NeuN+ cells in the dentate gyrus of adult mice (P < 0.001 and P < 0.05, resp.). Western blot analysis revealed significant upregulation of NeuroD2 in ELF-EMF-exposed mice compared to the TMT-treated group (P < 0.05). These findings suggest that ELF-EMF might have clinical implications for the improvement of neurodegenerative processes and could help develop a novel therapeutic approach in regenerative medicine.
Objective: To assess the effect of bromelain on different aspects of the wound healing process in type 1 diabetic rats. Method: In this study, 112 streptozocin-diabetic (type 1) male Wistar rats were euthanised; 28 each on days three, five, seven and 15, after a wound incision had been made. To estimate changes in a number of different cellular and tissue elements, histological sections were provided from all wound areas and stained with haematoxylin and eosin. Some 1.056mm2 of total wound area from all specimens were evaluated, by assessment of 4200 microscope photos provided from all histological sections, by stereological methods. A biomechanical test of each wound area was performed with an extensometer to evaluate the work-up to maximum force and maximum stress of the healed wound on day 15. Results: In the experimental groups, bromleain caused significant wound contraction and reduced granulation tissue formation by day 7 (p=0.003); increased neovasculars (new small vessels that appear in the wound area during wound healing) on days three, five and seven (p=0.001); significantly increased fibroblasts on day five but decreased by day seven (p=0.002); and significantly decreased macrophage numbers and epithelium thickness on all days of study (p=0.005). Wound strength significantly increased in experimental groups by day 15. Conclusion: Bromelain has a wide range of therapeutic benefits, but in most studies the mode of its action is not properly understood. It has been proved that bromelain has no major side effects, even after prolonged use. According to the results of this study, bromelain can be used as an effective health supplement to promote and accelerate wound healing indices, reduce inflammation and improve biomechanical parameters in diabetic wounds.
BackgroundCoenzyme Q10 has antioxidative and free radical scavenging effects. CoQ10 supplementation is known to have neuroprotective effects in some neurodegenerative diseases, such as Parkinson’s disease and Huntington’s disease.ObjectivesThe aim of this study was to evaluate both histopathologic and behavioral whether Coenzyme Q10 is protective against trimethyltin chloride (TMT) induced hippocampal damage.Materials and MethodsThis was an experimental study. Thirty-six Balb/c mice were divided into four groups, as follows: 1) control group; 2) sham group of mice that received a 100 µL intraperitoneal injection (IP) of sesame oil; 3) TMT group of mice that received a single 2.5 mg/kg/day IP injection of TMT; and 4) TMT + CoQ10 group of mice that received a 10 mg/kg IP injection of CoQ10. Body weight and Morris water maze (MWM) responses were investigated. In addition, the dentate gyrus neurons of the hippocampus were evaluated histopathologically by light and electron microscopes.ResultsThis study revealed that the body weight scale was found to be significantly higher in the CoQ10 group (21.39 ± 2.70), compared to the TMT group (19.39 ± 2.74) (P < 0.05). In the TMT group, the animals showed body a weight loss that was significantly lower than that of the control group (22.33 ± 3.06) (P < 0.05). Our results showed that CoQ10 provided protection against MWM deficits. Furthermore, TMT impaired the ability of mice to locate the hidden platform, compared to the control group (P < 0.05). Microscopic studies showed that TMT caused histopathological changes in the dentate gyrus and increased the number of necrotic neurons (476 ± 78.51), compared to the control group (208 ± 40.84) (P < 0.001). But, CoQ10 significantly attenuated (31 9 ± 60.08) the density of necrotic neurons compared to TMT (P < 0.05).ConclusionsThe results of the present study indicate that Coenzyme Q10 diminished neuronal necrosis and improved learning memory. Part of its beneficial effect is due to its potential to discount oxidative stress.
Systemic injection of LPS changes neuronal excitability and increase susceptibility for convulsions. Carvacrol exerts neuroprotective and antiepileptic effects in animal models. Herein, we investigated the anticonvulsive effect of carvacrol on LPS induced seizure severity and possible involvement of the hippocampal COX-1 and -2 activities in this effect. Adult male wistar rats were used. LPS was injected (400 μg/kg; i.p.) four hours before the PTZ (80 mg/kg; i.p.) injection. Carvacrol was injected (100 mg/kg; i.p.) immediately after the LPS injection. Following the PTZ injection, behavioral seizures were observed for 30 min. Latency and duration for each stage were recorded for analysis. Rats divided into seven groups: (1) PTZ, (2) LPS + PTZ, (3) carvacrol + PTZ, (4) LPS + carvacrol + PTZ, (5) LPS, (6) carvacrol, (7) intact. At the end of the experimental procedure the hippocampus of all animals were extracted to measure COX- 1 and 2 levels using the ELISA. LPS injection four hours before the PTZ injection were significantly reduced latency to seizure stages 3-5 and increased duration of the stage 5 in compare with PTZ group (p < 0.05). Carvacrol significantly reduced these effects of LPS on seizure susceptibility (p < 0.05). However, injection of carvacrol alone before the PTZ injection did not significantly affect seizure indexes in compare with PTZ group. Additionally, LPS significantly increased hippocampal level COX-2 but not COX-1 (p < 0.01) and carvacrol significantly attenuates this effect of LPS (p < 0.001). Carvacrol prevents the proconvulsant effect of LPS possibly through the inhibition of the COX-2 increased activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.