Incorporating various industrial waste materials into concrete has recently gained attention for sustainable construction. This paper, for the first time, studies the effects of silica stone waste (SSW) powder on concrete. The cement of concrete was replaced with 5, 10, 15, and 20% of the SSW powder. The mechanical properties of concrete, such as compressive and tensile strength, were studied. Furthermore, the microstructure of concrete was studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier transformed infrared spectroscopy (FTIR), and X-Ray diffraction (XRD) tests. Compressive and tensile strength of samples with 5% SSW powder was improved up to 18.8% and 10.46%, respectively. As can be observed in the SEM images, a reduced number of pores and higher density in the matrix can explain the better compressive strength of samples with 5% SSW powder.
At present, most of the generated waste expanded polystyrene (EPS) in developed countries are transported to landfill and in some developing and/or less-developed countries such as Iraq are sent to open landscapes; consequently, this inadequate waste disposal can be very dangerous to our health and environment. This study describes engineering properties of sustainable lightweight aggregate concrete (LWAC) incorporating novel aggregates of waste EPS produced by a unique recycling technique of densifying. The new recycling technique significantly improved the segregation resistance of EPS beads in concrete as these beads are ultra-light material. The novel LWA of densified EPS (DEPS) was used as partial natural aggregate replacement in the mixes. Three water/cement (W/C) ratios were used. Three different types of curing conditions of indoor full water curing, outdoor weathering exposure, and heating exposure were employed during this study to represent different conditions which concrete may be subject to. The engineering properties of concrete investigated were consistency, dry density, compressive strength, and ultrasonic pulse velocity (UPV) for long-term performance of more than one-year age. It was indicated that the properties of concrete were not only primarily influenced by the employed curing conditions but the content of DEPS in the mixtures and additionally the W/C ratio had effect on the properties of concrete. However, adequate engineering properties can be achieved using an appropriate amount of DEPS with proper W/C and curing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.