Ball detection is one of the most important tasks in the context of soccer-playing robots. The ball is a small moving object which can be blurred and occluded in many situations. Several neural network based methods with different architectures are proposed to deal with the ball detection. However, they are either neglecting to consider the computationally low resources of humanoid robots or highly depend on manually-tuned heuristic methods to extract the ball candidates. In this paper, we propose a new ball detection method for low-cost humanoid robots that can detect most soccer balls with a high accuracy rate of up to 97.17%. The proposed method is divided into two steps. First, some coarse regions that may contain a full ball are extracted using an iterative method employing an efficient integral image based feature. Then they are fed to a lightweight convolutional neural network to finalize the bounding box of a ball. We have evaluated the proposed approach using a comprehensive dataset and the experimental results show the efficiency of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.