This survey provides a structured and comprehensive overview of research on security and privacy in computer and communication networks that uses game-theoretic approaches. We present a selected set of works to highlight the application of game theory in addressing different forms of security and privacy problems in computer networks and mobile applications. We organize the presented works in six main categories: security of the physical and MAC layers, security of self-organizing networks, intrusion detection systems, anonymity and privacy, economics of network security, and cryptography. In each category, we identify security problems, players, and game models. We summarize the main results of selected works, such as equilibrium analysis and security mechanism designs. In addition, we provide a discussion on advantages, drawbacks, and the future direction of using game theory in this field. In this survey, our goal is to instill in the reader an enhanced understanding of different research approaches in applying game-theoretic methods to network security. This survey can also help researchers from various fields develop game-theoretic solutions to current and emerging security problems in computer networking.
In mobile networks, authentication is a required primitive of the majority of security protocols. However, an adversary can track the location of mobile nodes by monitoring pseudonyms used for authentication. A frequently proposed solution to protect location privacy suggests that mobile nodes collectively change their pseudonyms in regions called mix zones. Because this approach is costly, self-interested mobile nodes might decide not to cooperate and could thus jeopardize the achievable location privacy. In this paper, we analyze the non-cooperative behavior of mobile nodes with a game-theoretic model, where each player aims at maximizing its location privacy at a minimum cost. We first analyze the Nash equilibria in n-player complete information games. Because mobile nodes in a privacy-sensitive system do not know their opponents' payoffs, we then consider incomplete information games. We establish that symmetric Bayesian-Nash equilibria exist with simple threshold strategies in n-player games and derive the equilibrium strategies. By means of numerical results, we show that mobile nodes become selfish when the cost of changing pseudonym is small, whereas they cooperate more when the cost of changing pseudonym increases. Finally, we design a protocol -the PseudoGame protocol -based on the results of our analysis.
Abstract-Wireless social community networks are emerging as a new alternative to providing wireless data access in urban areas. By relying on users in the network deployment, a wireless community can rapidly deploy a high-quality data access infrastructure in an inexpensive way. But, the coverage of such a network is limited by the set of access points deployed by the users. Currently, it is not clear if this paradigm can serve as a replacement of existing centralized networks operating in licensed bands (such as cellular networks) or if it should be considered as a complimentary service only, with limited coverage. This question currently concerns many wireless network operators. In this paper, we study the dynamics of wireless social community networks by using a simple analytical model. In this model, users choose their service provider based on the subscription fee and the offered coverage. We show how the evolution of social community networks depends on their initial coverage, the subscription fee, and the user preferences for coverage. We conclude that by using an efficient static or dynamic pricing strategy, the wireless social community can obtain a high coverage. Using a game-theoretic approach, we then study a case where the mobile users can choose between the services provided by a licensed band operator and those of a social community. We show that for specific distribution of user preferences, there exists a Nash equilibrium for this non-cooperative game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.