Quantum probing consists of suitably exploiting a simple, small, and controllable quantum system to characterize a larger and more complex system. Here, we address the estimation of the cutoff frequency of the Ohmic spectral density of a harmonic reservoir by quantum probes. To this aim, we address the use of single-qubit and two-qubit systems and different kinds of coupling with the bath of oscillators. We assess the estimation precision by the quantum Fisher information of the sole quantum probe as well as the corresponding quantum signal-to-noise ratio. We prove that, for most of the values of the Ohmicity parameter, a simple probe such as a single qubit is already optimal for the precise estimation of the cutoff frequency. Indeed for those values, upon considering a two-qubit probe either in a Bell or in separable state, we do not find improvement to the estimation precision. However, we also showed that there exist few conditions where employing two qubits in a Bell state interacting with a common bath is more suitable for precisely estimating the cutoff frequency.
We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement (quasi-BSM) methods. The atom-field interaction in the cavity QED method is performed in small and large detuning regimes. We assume two atoms are initially entangled together and, distinctly two cavities are prepared in an entangled coherentcoherent state. In this scheme, we want to transform entanglement to the atom-field system. It is observed that, the fidelities of the swapped entangled state in the quasi-BSM method can be compatible with those obtained in the small and large detuning regimes in the cavity QED method (the condition of this compatibility will be discussed). In addition, in the large detuning regime, the swapped entangled state is obtained by detecting and quasi-BSM approaches. In the continuation, by making use of the atom-field entangled state obtained in both approaches in a large detuning regime, we show that the atomic as well as field states teleportation with complete fidelity can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.