Fourier Transform Infrared Spectroscopy (FTIR) is a non-destructive analytical technique that has been employed in this research to characterize the biochemical make-up of various rat brain regions. The sensorimotor cortex, caudate putamen, thalamus, and the hippocampus were found to have higher olefinic content—an indicator of a higher degree of unsaturated fatty acids—rich in short-chain fatty acids, and low in ester and lipid contents. While the regions of the corpus callosum, internal, and external capsule were found to contain long-chained and higher-esterified saturated fatty acids. These molecular differences may reflect the roles of the specific regions in information processing and can provide a unique biochemical platform for future studies on the earlier detection of pathology development in the brain, as a consequence of disease or injury. Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) is another vital analytical technique that was used in this work to analyze the elements’ distribution patterns in various regions of the brain. The complementary data sets allowed the characterization of the brain regions, the chemical dominating groups, and the elemental composition. This set-up may be used for the investigation of changes in the brain caused by diseases and help create a deeper understanding of the interactions between the organic and elemental composition.
In this work, the transformation of urine into nutrients using electrolytic oxidation in a single-compartment electrochemical cell in galvanostatic mode was investigated. The electrolytic oxidation was performed using thin film anode materials: boron-doped diamond (BDD) and dimensionally stable anodes (DSA). The transformation of urine into nutrients was confirmed by the release of nitrate (NO3−) and ammonium (NH4+) ions during electrolytic treatment of synthetic urine aqueous solutions. The removal of chemical oxygen demand (COD) and total organic carbon (TOC) during electrolytic treatment confirmed the conversion of organic pollutants into biocompatible substances. Higher amounts of NO3− and NH4+ were released by electrolytic oxidation using BDD compared to DSA anodes. The removal of COD and TOC was faster using BDD anodes at different current densities. Active chlorine and chloramines were formed during electrolytic treatment, which is advantageous to deactivate any pathogenic microorganisms. Larger quantities of active chlorine and chloramines were measured with DSA anodes. The control of chlorine by-products to concentrations lower than the regulations require can be possible by lowering the current density to values smaller than 20 mA/cm2. Electrolytic oxidation using BDD or DSA thin film anodes seems to be a sustainable method capable of transforming urine into nutrients, removing organic pollution, and deactivating pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.