Coronavirus disease-2019 (COVID-19) is a recent world pandemic disease that is caused by a newly discovered strain of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS- CoV-2). Patients with comorbidities are most vulnerable to this disease. Therefore, cancer patients are reported to be more susceptible to COVID-19 infection, particularly lung cancer patients. To evaluate the probable reasons behind the excessive susceptibility and fatality of lung cancer patients to COVID-19 infection, we targeted the two most crucial agents, Angiotensin-converting enzyme 2 (ACE2) and C-X-C motif 10 (CXCL10). ACE2 is a receptor protein that plays a vital role in the entry of SARS-CoV-2 into the host cell and CXCL10 is a cytokine mainly responsible for the lung cell damage involving in a cytokine storm. By using the UALCAN and GEPIA2 databases, we observed that ACE2 and CXCL10 are mostly overexpressed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). We then identified the functional significance of ACE2 and CXCL10 in lung cancer development by determining the genetic alteration frequency in their amino acid sequences using the cBioPortal web portal. Lastly, we did the pathological assessment of targeted genes using the PANTHER database. Here, we found that ACE2 and CXCL10 along with their commonly co-expressed genes are involved respectively in the binding activity and immune responses in case of lung cancer and COVID-19 infection. Finally, based on this systemic analysis, we concluded that ACE2 and CXCL10 are two possible biomarkers responsible for the higher susceptibility and fatality of lung cancer patients towards the COVID-19.
Introduction
Many of the global pandemics threaten human existence over the decades among which coronavirus disease (COVID‐19) is the newest exposure circulating worldwide. The RNA encoded severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus is referred as the pivotal agent of this deadly disease that induces respiratory tract infection by interacting host ACE2 receptor with its spike glycoprotein. Rapidly evolving nature of this virus modified into new variants helps in perpetrating immune escape and protection against host defense mechanism. Consequently, a new isolate, delta variant originated from India is spreading perilously at a higher infection rate.
Methods
In this study, we focused to understand the conformational and functional significance of the missense mutations found in the spike glycoprotein of SARS‐CoV‐2 delta variant performing different computational analysis.
Results
From physiochemical analysis, we found that the acidic isoelectric point of the virus elevated to basic pH level due to the mutations. The targeted mutations were also found to change the interactive bonding pattern and conformational stability analyzed by the molecular dynamic's simulation. The molecular docking study also revealed that L452R and T478K mutations found in the RBD domain of delta variant spike protein contributed to alter interaction with the host ACE2 receptor.
Conclusions
Overall, this study provided insightful evidence to understand the morphological and attributive impact of the mutations on SARS‐CoV‐2 delta variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.