In this research work we have examined the flow of Williamson liquid film fluid with heat transmission and having the impact of thermal radiation embedded in a permeable medium over a time dependent stretching surface. The fluid flow of liquid films is assumed in two dimensions. By using suitable similarity transformation the governing non-linear partial differential equations have been transformed into non-linear differential equations. An optimal approach has been used to acquire the solution of the modelled problem. The convergence of the technique has been shown numerically. The impact of the Skin friction and Nusslet number and their influence on thin film flow are shown numerically. Thermal radiation, unsteadiness effect and porosity have mainly focused in this paper. Furthermore, for conception and physical demonstration the entrenched parameters, like porosity parameter k, Prandtl number Pr, unsteadiness parameter S, Radiation parameter Rd, Magnetic parameter M, and Williamson fluid parameter have been discussed graphically in detail with their effect on liquid film flow.
Antimony selenide (Sb2Se3) is a promising candidate for photodetector applications boasting unique material benefits and remarkable optoelectronic properties. Achieving high‐performance self‐powered Sb2Se3 photodetector through a synergistic regulation of absorber layer and heterojunction interface demonstrates great potential and needs essential investigation. In this study, an effective two‐step thermodynamic/kinetic deposition technique containing sputtered and selenized Sb precursor is implemented to induce self‐assembled growth of Sb2Se3 light absorbing thin film with large crystal grains and desirable [hk1] orientation, presenting considerable thin‐film photodetector performance. Furthermore, aluminum (Al3+) cation dopant is introduced to modify the optoelectronic properties of CdS buffer layer, and further optimize the Sb2Se3/CdS (Al) heterojunction interface quality. Thanks to the suppressed carrier recombination and enhanced carrier transport kinetics, the champion Mo/Sb2Se3/CdS (Al)/ITO/Ag photodetector exhibits self‐powered and broadband characteristics, accompanied by simultaneously high responsivity of 0.9 A W−1 (at 11 nW cm−2), linear dynamic range of 120 dB, impressive ON/OFF switching ratio over 106 and signal‐to‐noise ratio of 109, record total noise determined realistic detectivity of 4.78 × 1012 Jones, and ultra‐fast response speed with rise/decay time of 24/75 ns, representing the top level for Sb2Se3‐based photodetectors. This intriguing work opens up an avenue for its self‐powered broadband photodetector applications.
This research paper investigates entropy generation analysis on two-dimensional nanofluid film flow of Eyring-Powell fluid with heat amd mass transmission over an unsteady porous stretching sheet in the existence of uniform magnetic field (MHD). The flow of liquid films are taken under the impact of thermal radiation. The basic time dependent equations of heat transfer, momentum and mass transfer are modeled and converted to a system of differential equations by employing appropriate similarity transformation with unsteady dimensionless parameters. Entropy analysis is the main focus in this work and the impact of physical parameters on the entropy profile are discussed in detail. The influence of thermophoresis and Brownian motion has been taken in the nanofluids model. An optima approach has been applied to acquire the solution of modeled problem. The convergence of the HAM (Homotopy Analysis Method) has been presented numerically. The disparity of the Nusslet number, Skin friction, Sherwood number and their influence on the velocity, heat and concentration fields has been scrutinized. Moreover, for comprehension, the physical presentation of the embedded parameters are explored analytically for entropy generation and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.