Indoor Air Quality (IAQ) issues have a direct impact on the health and comfort of building occupants. In this paper, an experimental low-cost system has been developed to address IAQ issues by using a distributed internet of things platform to control and monitor the indoor environment in building spaces while adopting a data-driven approach. The system is based on several real-time sensor data to model the indoor air quality and accurately control the ventilation system through algorithms to maintain a comfortable level of IAQ by balancing indoor and outdoor pollutant concentrations using the Indoor Air Quality Index approach. This paper describes hardware and software details of the system as well as the algorithms, models, and control strategies of the proposed solution which can be integrated in detached ventilation systems. Furthermore, a mobile app has been developed to inform, in real time, different-expertise-user profiles showing indoor and outdoor IAQ conditions. The system is implemented in a small prototype box and early-validated with different test cases considering various pollutant concentrations, reaching a Technology Readiness Level (TRL) of 3–4.
Electrochemical advanced oxidation processes (EAOP®) are promising technologies for the decentralized treatment of water and will be important elements in achieving a circular economy. To overcome the drawback of the high operational expenses of EAOP® systems, two novel reactors based on a next-generation boron-doped diamond (BDD) anode and a stainless steel cathode or a hydrogen-peroxide-generating gas diffusion electrode (GDE) are presented. This reactor design ensures the long-term stability of BDD anodes. The application potential of the novel reactors is evaluated with artificial wastewater containing phenol (COD of 2000 mg L−1); the reactors are compared to each other and to ozone and peroxone systems. The investigations show that the BDD anode can be optimized for a service life of up to 18 years, reducing the costs for EAOP® significantly. The process comparison shows a degradation efficiency for the BDD–GDE system of up to 135% in comparison to the BDD–stainless steel electrode combination, showing only 75%, 14%, and 8% of the energy consumption of the BDD–stainless steel, ozonation, and peroxonation systems, respectively. Treatment efficiencies of nearly 100% are achieved with both novel electrolysis reactors. Due to the current density adaptation and the GDE integration, which result in energy savings as well as the improvements that significantly extend the lifetime of the BDD electrode, less resources and raw materials are consumed for the power generation and electrode manufacturing processes.
Purpose Thin conducting sheets are used in many electric and electronic devices. Solving numerically the eddy current problems in presence of these thin conductive sheets requires a very fine mesh which leads to a large system of equations, and it becomes more problematic in case of higher frequencies. The purpose of this paper is to show the numerical pertinence of equivalent models for 3D eddy current problems with a conductive thin layer of small thickness e based on the replacement of the thin layer by its mid-surface with equivalent transmission conditions that satisfy the shielding purpose, and by using an efficient discretization using the boundary element method (BEM) to reduce the computational work. Design/methodology/approach These models are solved numerically using the BEM and some numerical experiments are performed to assess the accuracy of the proposed models. The results are validated by comparison with an analytical solution and a numerical solution by the commercial software Comsol. Findings The error between the equivalent models and analytical and numerical solutions confirms the theoretical approach. In addition to this accuracy, the computational work is reduced by considering a discretization method that requires only a surface mesh. Originality/value Based on a hybrid formulation, the authors present briefly a formal derivation of impedance transmission conditions for 3D thin layers in eddy current problems where non-conductive materials are considered in the interior and the exterior domain of the sheet. BEM is adopted to discretize the problem as there is no need for volume discretization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.