Recent improvements in magnetic material characteristics and switching devices have generated a possibility to replace the electrical buses with highfrequency magnetic links in microgrids. Multiwinding transformers (MWTs) as magnetic links can effectively reduce the number of conversion stages of renewable energy system by adjusting turn ratio of windings according to the source voltage level. Other advantages are galvanic isolation, bidirectional power flow capability, and simultaneous power transfer between multiple ports. Despite the benefits, design, and characterization of MWTs are relatively complex due to their structural complexity and cross-coupling effects. This paper presents all stages of numerical design, prototyping, and characterization of an MWT for microgrid application. To design the transformer for certain value of parameters, the reluctance network method is employed. Due to the iterative nature of transformer design, it presented less computation time and reasonable accuracy. A prototype of designed transformer is implemented using amorphous magnetic materials. A set of experimental tests are conducted to measure the magnetic characteristics of the core and series coupling and open-circuit tests are applied to measure the transformer parameters. A comparison between the simulation and experimental test results under different loads within the medium-frequency range validated both design and modeling procedures.
In this paper a grid-tied residential smart microgrid topology is proposed which integrates energies of a PV, a fuel cell and a battery bank to supply the local loads through a combination of electric and magnetic buses. In contrast to multiple-converter based micro-grids with a common electric bus, using a multi-port converter with a common magnetic bus can effectively reduce the number of voltage conversion stages, size and cost of the renewable energy system and isolates the conversion ports. The resultant topology utilizes a centralized system level control which leads to the faster and more flexible energy management. The proposed micro-grid is able to operate in multiple grid-connected and off-grid operation modes. A fuzzy controlled energy management unit (EMU) is designed to select the appropriate operation mode considering both real-time and long-term-predicted data of the energy generation and consumption. A mode transition process is designed to smooth the mode variation by using a state transition diagram and bridging modes. To improve the microgrid operation performance, appropriate control techniques such as synchronized bus-voltage balance are used. A prototype of the proposed micro-grid and the EMU are developed and experimentally tested for three different energy management scenarios. Energy distribution and energy cost analysis are performed for each scenario to validate the proposed control method.
In this paper, a novel energy management system with two operating horizons is proposed for a residential micro-grid application. The micro-grid utilises the energies of a photovoltaic (PV), a fuel cell and a battery bank to supply the local loads through a combination of electric and magnetic buses. The proposed micro-grid operates in a large number of grid-connected and off-grid operation modes. The energy management system includes a long-term data prediction unit based on a 2D dynamic programming and a short-term fuzzy controller. The long-term prediction unit is designed to determine the appropriate variation range of the battery state of charge and fuel cell state of hydrogen. The efficiency performance of the micro-grid components, predicted energy generation and demand, energy cost and the system constraints are taken into account. The resultant data then is sent to the short-term fuzzy controller which determines the operation mode of the micro-grid based on the real-time condition of the micro-grid elements. A prototype of the proposed micro-grid including the energy management system is developed, and experimental tests are conducted for three different energy management scenarios. The proposed management technique is validated through energy distribution and cost analysis.
This paper presents the development of a residential micro-grid topology based on a combination of common magnetic and electrical buses. The magnetic bus interfaces two low voltage dc buses linking a PV and a fuel cell to a high voltage dc bus connected to a grid-tied single-phase bidirectional inverter. A battery is used to store the surplus energy of the system and stabilise the dc voltage of the fuel cell bus. A synchronised bus voltage balance (SBVB) technique is used to reduce the conduction losses and increase the soft switching operation range of the converters. To improve the maximum power point tracking (MPPT) performance and system efficiency, appropriate control techniques and compensation blocks are designed. The proposed micro-grid is able to operate in multiple grid-connected and off-grid operation modes according to a predictive 2D dynamic programming-based energy management. A mode selection and transition strategy is developed to select the appropriate operation mode and smooth the mode transition. A detailed study of the micro-grid including steady-state operation, small signal modelling, controller design, and energy management is presented. A prototype of the system is developed, and experimental tests are conducted for an energy management scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.