The aim of this clinical and experimental study was to determine whether systemic neuron-specific enolase (NSE) is a useful early marker of traumatic brain injury (TBI) and whether NSE is affected by ischemia/reperfusion damage of abdominal organs. Our study included patients with and without TBI (verified by computerized tomography) admitted within 6 h after trauma and male Sprague-Dawley rats with ischemia and reperfusion of the abdominal organs liver, gut, or kidney. Thirty-eight study patients included 13 with isolated TBI and 18 patients with multiple trauma and TBI. Seven patients had multiple trauma but no TBI. Fifteen rats were anaesthetized and subjected to isolated ischemia of the liver, gut, or kidney (n = 5 each) for 1 h, followed by reperfusion for 3 h. In patients, NSE increased over 2-fold versus the upper normal limit (10 microg/L) within 6 h after trauma, regardless of whether TBI had occurred or not. In rats, NSE increased over 3-fold versus laboratory controls during ischemia of the liver and kidney (both P < 0.0005), but not of the gut. NSE increased over 2-fold after onset of reperfusion of the liver and kidney (both P < 0.05), but not of the gut and increased over 3-fold after 3 h of reperfusion of the liver, gut (both P < 0.005), and kidney (P < 0.0005). Our data show that systemic NSE increases to similar degrees with and without TBI. Therefore, NSE is not a useful early marker of TBI in multiple trauma.
Age/gender may likely influence the course of septic complications after trauma. We aimed to characterize the influence of age/gender on the response of circulating cytokines, cells and organ function in post-traumatic sepsis. We additionally tested whether post-traumatic responses alone can accurately predict outcomes in subsequent post-traumatic sepsis. A mouse 2-hit model of trauma/hemorrhage (TH, 1st hit) and cecal ligation and puncture (CLP, 2nd hit) was employed. 3, 15 and 20 month (m) old female (♀) and male (♂) CD-1 mice underwent sublethal TH followed by CLP 2 days later. Blood was sampled daily until day 6 post-TH and survival was followed for 16 days. To compare general response patterns among groups, we calculated two scores: the inflammatory response (including KC, MIP-1α, TNFα, MCP-1, IFNγ, IL-1β,-5,-6,-10) and the organ dysfunction score (Urea, ALT, AST and LDH). Moreover, mice were retrospectively divided into survivors (SUR) and dying (DIE) based on post-CLP outcome. In general, females survived better than males and their survival did not correspond to any specific estrus cycle phase. Pre-CLP phase: the post-TH inflammatory score was weakest in 3 m♂ but there were no changes among remaining groups (similar lack of differences in the organ dysfunction score). TH induced a 40% increase of IFNγ, MIP-1α and IL-5 in 15 m♂ SUR (vs. DIE) but predictive accuracy for post-CLP outcomes was moderate. Post-CLP phase: while stable in males, inflammatory response score in 15 m and 20 m females decreased with age at day 1 and 2 post-CLP. SUR vs. DIE differences in inflammatory and organ dysfunction score were evident but their magnitude was comparable across age/gender. Nearly identical activation of the humoral inflammatory and organ function compartments, both across groups and according to sepsis severity, suggests that they are not directly responsible for the age/gender-dependent disparity in TH-CLP survival in the studied young-to-mature population.
S100B is increased in bilateral femur fracture without haemorrhagic shock in rats. This finding suggests that bone marrow is a potential extracerebral source of S100B.
Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.