For countries aiming for malaria elimination, travel of infected individuals between endemic areas undermines local interventions. Quantifying parasite importation has therefore become a priority for national control programs. We analyzed epidemiological surveillance data, travel surveys, parasite genetic data, and anonymized mobile phone data to measure the spatial spread of malaria parasites in southeast Bangladesh. We developed a genetic mixing index to estimate the likelihood of samples being local or imported from parasite genetic data and inferred the direction and intensity of parasite flow between locations using an epidemiological model integrating the travel survey and mobile phone calling data. Our approach indicates that, contrary to dogma, frequent mixing occurs in low transmission regions in the southwest, and elimination will require interventions in addition to reducing imported infections from forested regions. Unlike risk maps generated from clinical case counts alone, therefore, our approach distinguishes areas of frequent importation as well as high transmission.
BackgroundMore than 95% of total malaria cases in Bangladesh are reported from the 13 high endemic districts. Plasmodium falciparum and Plasmodium vivax are the two most abundant malaria parasites in the country. To improve the detection and management of malaria patients, the National Malaria Control Programme (NMCP) has been using rapid diagnostic test (RDT) in the endemic areas. A study was conducted to establish a SYBR Green-based modified real-time PCR assay as a gold standard to evaluate the performance of four commercially-available malaria RDTs, along with the classical gold standard- microscopy.MethodsBlood samples were collected from 338 febrile patients referred for the diagnosis of malaria by the attending physician at MatirangaUpazila Health Complex (UHC) from May 2009 to August 2010. Paracheck RDT and microscopy were performed at the UHC. The blood samples were preserved in EDTA tubes. A SYBR Green-based real-time PCR assay was performed and evaluated. The performances of the remaining three RDTs (Falcivax, Onsite Pf and Onsite Pf/Pv) were also evaluated against microscopy and real-time PCR using the stored blood samples.ResultIn total, 338 febrile patients were enrolled in the study. Malaria parasites were detected in 189 (55.9%) and 188 (55.6%) patients by microscopy and real-time PCR respectively. Among the RDTs, the highest sensitivity for the detection of P. falciparum (including mixed infection) was obtained by Paracheck [98.8%, 95% confidence interval (CI) 95.8-99.9] and Falcivax (97.6%, 95% CI 94.1-99.4) compared to microscopy and real-time PCR respectively. Paracheck and Onsite Pf/Pv gave the highest specificity (98.8%, 95% CI 95.7-99.9) compared to microscopy and Onsite Pf/Pv (98.8, 95% CI 95.8-99.9) compared to real-time PCR respectively for the detection of P. falciparum. On the other hand Falcivax and Onsite Pf/Pv had equal sensitivity (90.5%, 95% CI 69.6-98.8) and almost 100% specificity compared to microscopy for the detection of P. vivax. However, compared to real-time PCR assay RDTs and microscopy gave low sensitivity (76.9%, 95% CI 56.4-91) in detecting of P. vivax although a very high specificity was obtained (99- 100%).ConclusionThe results of this study suggest that the SYBR Green-based real-time PCR assay could be used as an alternative gold standard method in a reference setting. Commercially-available RDTs used in the study are quite sensitive and specific in detecting P. falciparum, although their sensitivity in detecting P. vivax was not satisfactory compared to the real-time PCR assay.
BackgroundBangladesh had one of the highest burdens of lymphatic filariasis (LF) at the start of the Global Programme to Eliminate Lymphatic Filariasis (GPELF) with an estimated 70 million people at risk of infection across 34 districts. In total 19 districts required mass drug administration (MDA) to interrupt transmission, and 15 districts were considered low endemic. Since 2001, the National LF Programme has implemented MDA, reduced prevalence, and been able to scale up the WHO standard Transmission Assessment Survey (TAS) across all endemic districts as part of its endgame surveillance strategy. This paper presents TAS results, highlighting the momentous geographical reduction in risk of LF and its contribution to the global elimination target of 2020.Methodology/Principal findingsThe TAS assessed primary school children for the presence of LF antigenaemia in each district (known as an evaluation unit—EU), using a defined critical cut-off threshold (or ‘pass’) that indicates interruption of transmission. Since 2011, a total of 59 TAS have been conducted in 26 EUs across the 19 endemic MDA districts (99,148 students tested from 1,801 schools), and 22 TAS in the 15 low endemic non-MDA districts (36,932 students tested from 663 schools). All endemic MDA districts passed TAS, except in Rangpur which required two further rounds of MDA. In total 112 students (male n = 59; female n = 53), predominately from the northern region of the country were found to be antigenaemia positive, indicating a recent or current infection. However, the distribution was geographically sparse, with only two small focal areas showing potential evidence of persistent transmission.Conclusions/SignificanceThis is the largest scale up of TAS surveillance activities reported in any of the 73 LF endemic countries in the world. Bangladesh is now considered to have very low or no risk of LF infection after 15 years of programmatic activities, and is on track to meet elimination targets. However, it will be essential that the LF Programme continues to develop and maintain a comprehensive surveillance strategy that is integrated into the health infrastructure and ongoing programmes to ensure cost-effectiveness and sustainability.
Background The Bangladesh Lymphatic Filariasis (LF) Elimination Programme has made significant progress in interrupting transmission through mass drug administration (MDA) and has now focussed its efforts on scaling up managing morbidity and preventing disability (MMDP) activities to deliver the minimum package of care to people affected by LF clinical conditions. This paper highlights the Bangladesh LF Programme’s success in conducting a large-scale cross-sectional survey to determine the number of people affected by lymphoedema and hydrocoele, which enabled clinical risk maps to be developed for targeted interventions across the 34 endemic districts (19 high endemic; 15 low endemic). Methodology/Principal findings In the 19 high endemic districts, 8,145 community clinic staff were trained to identify and report patients in their catchment area. In the 15 low endemic districts, a team of 10 trained field assistants conducted active case finding with cases reported via a SMS mHealth tool. Disease burden and prevalence maps were developed, with morbidity hotspots identified at sub-district level based on a combination of the highest prevalence rates per 100,000 and case-density rates per square kilometre (km 2 ). The relationship between morbidity and baseline microfilaria (mf) prevalence was also examined. In total 43,678 cases were identified in the 19 high endemic districts; 30,616 limb lymphoedema (70.1%; female 55.3%), 12,824 hydrocoele (29.4%), and 238 breast/female genital swelling (0.5%). Rangpur Division reported the highest cases numbers and prevalence of lymphoedema (26,781 cases, 195 per 100,000) and hydrocoele (11661 cases, 169.6 per 100,000), with lymphoedema predominately affecting females (n = 21,652). Rangpur and Lalmonirhat Districts reported the highest case numbers (n = 11,199), and prevalence (569 per 100,000) respectively, with five overlapping lymphoedema and hydrocoele sub-district hotspots. In the 15 low endemic districts, 732 cases were identified; 661 lymphoedema (90.2%; female 39.6%), 56 hydrocoele (7.8%), and 15 both conditions (2.0%). Spearman’s correlation analysis found morbidity and mf prevalence significantly positively correlated (r = 0.904; p<0.01). Conclusions/Significance The Bangladesh LF Programme has developed one of the largest, most comprehensive country databases on LF clinical conditions in the world. It provides an essential database for health workers to identify local morbidity hotspots, deliver the minimum package of care, and address the dossier elimination requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.