Four new symmetrical Schiff bases derived from 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde have been synthesized and characterized by elemental analysis and different spectroscopic techniques. The reaction of 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl with two equivalents of 5-tert-butyl-, 3,5-dinitro-, 3,5-dibromo- and 3-tert-butyl-salicylaldehyde yielded 2,2’-bis(5-tert-butyl-salicylideneamino)-4,4’-dimethyl-1,1’-biphenyl (A1) as well as the 3,5-dinitro- (A2), 3,5-dibromo- (A3) and 3-tert-butyl- (A4) substituted derivatives. The tetradentate ligands were then reacted with copper-, manganese- and zinc-acetate producing the tetra-coordinate metal complexes which were characterized by FTIR, UV-Visible spectroscopy, magnetic susceptibility and elemental analysis. Zinc complexes were characterized by 1H-NMR spectroscopy. Density functional theory (DFT) calculations at the B3LYP/6-31G(d) level of theory were carried out to fully optimize and examine the molecular geometries of complexes. Subsequently, IR vibrational and UV-Vis absorption spectra were computed and correlated with the observed values and the results are in good agreement with the experimental data. The anticancerous and antiproliferative activity of the A3 ligand and its metal complexes were determined.
Objective: A simple, Rapid, and sensitive HPLC method utilizing UV detection was developed and validated for the simultaneous estimation of Fluticasone propionate (FP) and Salmeterol xinafoate (SX) in solutions and in vitro human plasma.
Methods: Chromatographic analysis was done on SUPELCO® RP-C18 column (150 x 4.6 mm, 5 μm particle size) with an isocratic mobile phase composed of methanol, acetonitrile, and water (50:20:30, v/v) mixture while flow rate was set to 1 ml/min. Detection with UV at maximum absorbance wavelength (ʎmax) values of 236 and 252 for FP and SX, respectively. Spiked plasma samples were liquid-liquid extracted by diethyl ether and reconstituted using methanol.
Results: Method was accurate and precise over a linear (R2>0.995) range of (0.067-100 µg/ml) and (0.0333-50 µg/ml) for FP and SX, respectively. LOD/lOQ values were 0.13/0.6 and 0.06/0.3 µg/ml for FP and SX, respectively.
The developed method was successfully applied for the analysis of FP and SX in spiked human plasma samples. The method is considered to be accurate and precise over a linear (R2>0.9969) range of (6.67-66.67 µg/ml) and (3.33-33.3 µg/ml) for FP and SX, respectively. Extraction efficiency was approved by recovery values of (94.98–102.46 %) and (96.54–102.62 %) for FP and SX, respectively.
Conclusion: This validated method revealed simple and cheap extraction procedures and detectors, non-buffered mobile phase, and short retention times with excellent resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.