This research presents a system to use natural gas to meet electricity, freshwater and cooling needs for a residential building in Bandar Abbas. The system includes a gas turbine, absorption chiller and multi-effect desalination (MED) plant. The energy produced in the gas turbine is used to generate electricity, and the excess energy is used to produce cooling and freshwater. Finally, an exergoeconomic evaluation of the system is performed. The effects of ambient temperature on the output power as well as the exergy current have been investigated. The COP of the absorption cycle has been investigated, and the results show that at an operating temperature of 150∘C compared to 90∘C, the efficiency rate increases to 20%. The highest exergoeconomic cost rate is related to absorption chiller, and the lowest is related to heat recovery steam generation. The results show that if the ambient temperature increases, the production capacity decreases. Increasing the fuel flow rate increases the power. Evaluation of two different solutions to reduce the ambient temperature and increase the fuel flow shows that increasing the fuel flow is a better solution, considering the exergy cost of the absorption chiller, which is 10 times higher than that of the gas turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.