SUMMARYOne major difficulty in seepage analyses is finding the position of phreatic surface which is unknown at the beginning of solution and must be determined in an iterative process. The objective of the present study is to develop a novel non-boundary-fitted mesh finite-element method capable of solving the unconfined seepage problem in domains with arbitrary geometry and continuously varied permeability. A new nonboundary-fitted finite element method named as smoothed fixed grid finite element method (SFGFEM) is used to simplify the solution of variable domain problem of unconfined seepage. The gradient smoothing technique, in which the area integrals are transformed into the line integrals around edges of smoothing cells, is used to obtain the element matrices. The solution process starts with an initial guess for the unknown boundary and SFGFEM is used to approximate the field variable. The boundary shape is then modified to eventually satisfy nonlinear boundary condition in an iterative process. Some numerical examples are solved to evaluate the applicability of the proposed method and the results are compared with those available in the literature.
Space separation within the Proper Generalized Decomposition—PGD—rationale allows solving high dimensional problems as a sequence of lower dimensional ones. In our former works, different geometrical transformations were proposed for addressing complex shapes and spatially non-separable domains. Efficient implementation of separated representations needs expressing the domain as a product of characteristic functions involving the different space coordinates. In the case of complex shapes, more sophisticated geometrical transformations are needed to map the complex physical domain into a regular one where computations are performed. This paper aims at proposing a very efficient route for accomplishing such space separation. A NURBS-based geometry representation, usual in computer aided design—CAD—, is retained and combined with a fully separated representation for allying efficiency (ensured by the fully separated representations) and generality (by addressing complex geometries). Some numerical examples are considered to prove the potential of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.