As an ongoing public health menace, the novel coronavirus pandemic has challenged the world. With several mutations and a high transmission rate, the virus is able to infect individuals in an exponential manner. At the same time, Iran is confronted with multiple wave peaks and the health care system is facing a major challenge. In consequence, developing a robust forecasting methodology can assist health authorities for effective planning. In that regard, with the help of Artificial Neural Network-Artificial Bee Colony (ANN-ABC) and Artificial Neural Network- Firefly Algorithm (ANN-FA) as two robust hybrid artificial intelligence-based models, the current study intends to select the optimal model with the maximum accuracy rate. To do so, first a sample of COVID-19 confirmed cases in Iran ranging from 19 February 2020 to 25 July 2021 is compiled. 75% (25%) of total observation is randomly allocated as training (testing) data. Afterwards, an ANN model is trained with Levenberg–Marquardt algorithm. Accordingly, based on R-squared and root-mean-square error criteria, the optimal number of hidden neurons is computed as 17. The proposed ANN model is employed to develop ANN-ABC and ANN-FA models for achieving the maximum accuracy rate. According to ANN-ABC, the R- squared values of the optimal model are 0.9884 and 0.9885 at train and test stages. In respect to ANN-FA, the R-squared ranged from 0.9954 to 0.9940 at the train and test phases, which indicates the outperformance of ANN-FA for predicting COVID-19 new cases in Iran. Finally, the proposed ANN-ABC and ANN-FA are applied for simulating the COVID-19 new cases data in different countries. The results revealed that both models can be used as a robust predictor of COVID-19 data and in a majority of cases ANN-FA outperforms the ANN-ABC.
As an ongoing public health menace, the novel coronavirus pandemic has challenged the world. With several mutations and a high transmission rate, the virus is able to infect individuals in an exponential manner. At the same time, Iran is confronted with multiple wave peaks and the health care system is facing a major challenge. In consequence, developing a robust forecasting methodology can assist health authorities for effective planning. In that regard, with the help of Artificial Neural Network-Artificial Bee Colony (ANN-ABC) and Artificial Neural Network- Firefly Algorithm (ANN-FA) as two robust hybrid artificial intelligence-based models, the current study intends to select the optimal model with the maximum accuracy rate. To do so, first a sample of COVID-19 confirmed cases in Iran ranging from 19 February 2020 to 25 July 2021 is compiled. 75% (25%) of total observation is randomly allocated as training (testing) data. Afterwards, an ANN models is trained with Levenberg Marquardt algorithm. Accordingly, based on R-squared and root-mean-square error criteria, the optimal number of hidden neurons is computed as 17. The proposed ANN model is employed to develop ANN-ABC and ANN-FA models for achieving the maximum accuracy rate. According to ANN-ABC, the R- squared values of the optimal model are 0.9884 and 0.9885 at train and test stages, correspondingly. In respect to ANN-FA, for the selected model, the R-squared ranged from 0.9954 to 0.9940 at the train and test phases, respectively. The results indicated that both hybrid ANN-ABC and ANN-FA are the robust predictor of COVID-19 new cases in Iran. Additionally, with a slight difference, the ANN-FA model outperformed ANN-ABC algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.