In recent years, the interest in using Laplace transforms as a useful method to solve certain types of differential equations and integral equations has grown significantly. In addition, the applications of Laplace transform are closely related to some important parts of pure mathematics. Laplace transform is one of the methods for solving differential equations. This method is especially useful for solving inhomogeneous differential equations with constant coefficients and it has advantages compared to other methods of solving differential equations. Linear differential equations with constant coefficients are among the equations that can be solved using the Laplace transform. Because the transformation Laplace is one of the transformations that easily converts exponential functions, trigonometric functions, and logarithmic functions into algebraic functions. Therefore, it is considered a better method for solving linear differential equations with constant coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.