Huntington's disease (HD) as an inherited neurodegenerative disorder leads to neuronal loss in striatum. Progressive motor dysfunction, cognitive decline, and psychiatric disturbance are the main clinical symptoms of the HD. This disease is caused by expansion of the CAG repeats in exon 1 of the huntingtin which encodes Huntingtin protein (Htt). Various cellular and molecular events play role in the pathology of HD. Mitochondria as important organelles play crucial roles in the most of neurodegenerative disorders like HD. Critical roles of the mitochondria in neurons are ATP generation, Ca buffering, ROS generation, and antioxidant activity. Neurons as high-demand energy cells closely related to function, maintenance, and dynamic of mitochondria. In the most neurological disorders, mitochondrial activities and dynamic are disrupted which associate with high ROS level, low ATP generation, and apoptosis. Accumulation of mutant huntingtin (mHtt) during this disease may evoke mitochondrial dysfunction. Here, we review recent findings to support this hypothesis that mHtt could cause mitochondrial defects. In addition, by focusing normal huntingtin functions in neurons, we purpose mitochondria and Huntingtin association in normal condition. Moreover, mHtt affects various cellular signaling which ends up to mitochondrial biogenesis. So, it could be a potential candidate to decline ATP level in HD. We conclude how mitochondrial biogenesis plays a central role in the neuronal survival and activity and how mHtt affects mitochondrial trafficking, maintenance, integrity, function, dynamics, and hemostasis and makes neurons vulnerable to degeneration in HD.
Fndc5 has been recently recognized as a myokine which could be cleaved and secreted into blood stream. It is termed as irisin with an important role in thermogenesis and energy homeostasis. Increased expression of Fndc5 has been reported upon retinoic acid treatment during neural differentiation and its knockdown decreased neural differentiation and neurite outgrowth. This study tries to evaluate the effect of Fndc5 overexpression on rate of neural differentiation in mouse. (Thus, transduced cell line of mouse embryonic stem cell with ability to express Fndc5 under Doxycycline treatment was established. Subsequently, the effect of overexpression of Fndc5 on different stages of neural differentiation was studied). Our study showed an increase enhancement in neuronal precursor markers and mature neuron markers upon overexpression of Fndc5, concluding that Fndc5 facilitates neural differentiation. This effect might be related to increased expression of BDNF following overexpression of Fndc5. Our findings are consistent with recent studies reporting a similar role for Fndc5 in proliferation of neural cells and increase in the expression of neurotrophins like BDNF.
Neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases have high prevalence among the elderly. Many strategies have been established to alleviate the symptoms experienced by affected individuals. Recent studies have shown that exercise helps patients with neurological disorders to regain lost physical abilities. PGC1α/FNDC5/BDNF has emerged recently as a critical pathway for neuroprotection. PGC1α is a highly conserved co-activator of transcription factors that preserves and protects neurons against destruction. PGC1α regulates FNDC5 and its processed and secreted peptide Irisin, which has been proposed to play a critical role in energy expenditure and to promote neural differentiation of mouse embryonic stem cells. FNDC5 may also increase the expression of the neurotrophic factor BDNF, a neuroprotective agent, in the hippocampus. BDNF is secreted from hippocampus, amygdala, cerebral cortex and hypothalamus neurons and initiates intracellular signaling pathways through TrkB receptors. These pathways have positive feedback on CREB activities and lead to enhancement in PGC1α expression in neurons. Therefore, FNDC5 could behave as a key regulator in neuronal survival and development. This review presents recent findings on the PGC1α/FNDC5/BDNF pathway and its role in neuroprotection, and discusses the controversial promise of irisin as a mediator of the positive benefits of exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.