This study describes the fabrication of sulfonated polyethersulfone (SPES) as a super-hydrophilic substrate for developing a composite forward osmosis (FO) membrane on a nonwoven backing fabric support. SPES was prepared through an indirect sulfonation procedure and then blended with PES at a certain ratio. Applying SPES as the substrate affected membrane properties, such as porosity, total thickness, morphology, and hydrophilicity. The PES-based FO membrane with a finger-like structure had lower performance in comparison with the SPES based FO membrane having a sponge-like structure. The finger-like morphology changed to a sponge-like morphology with the increase in the SPES concentration. The FO membrane based on a more hydrophilic substrate via sulfonation had a sponge morphology and showed better water flux results. Water flux of 26.1 L m−2 h−1 and specific reverse solute flux of 0.66 g L−1 were attained at a SPES blend ratio of 50 wt.% when 3 M NaCl was used as the draw solution and DI water as feed solution under the FO mode. This work offers significant insights into understanding the factors affecting FO membrane performance, such as porosity and functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.