The antibacterial effect of AgNPs was investigated by determining MIC/MBC and growth kinetics assay. The lowest MIC/MBC was found to be in the range of 11.25-22.5 µg ml(-1) . The growth kinetics curve shows that 25 µg ml(-1) AgNPs strongly inhibits the bacterial growth. Confocal laser scanning electron microscopy (CLSM) shows that as the concentration of NPs increases, reduction in the number of cells was observed and at 50 µg ml(-1) of NPs, 100% death was noticed. Scanning electron microscopy (SEM) shows cells were severely damaged with pits, multiple depressions, and indentation on cell surface and original rod shape has swollen into bigger size. High resolution-transmission electron microscopic (HR-TEM) micrograph shows that cells were severely ruptured. The damaged cells showed either localized or complete separation of the cell membrane. The NPs that anchor onto cell surface and penetrating the cells may cause membrane damage, which could result in cell lysis. The interaction of AgNPs to membrane biomolecules; lipopolysaccharide (LPS) and L-α-phosphatidyl-ethanolamine (PE) were investigated by attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy. LPS and PE showed IR spectral changes after AgNPs exposure. The O-antigen part of LPS was responsible for interaction of NPs through hydrogen bonding. The phosphodiester bond of PE was broken by AgNPs, forming phosphate monoesters and resulting in the highly disordered alkyl chain. The AgNPs-induced structural changes in phospholipid may lead to the loss of amphiphilic properties, destruction of the membrane and cell leaking. The biomolecular changes in bacterial cell envelope revealed by ATR-FTIR provide a deeper understanding of cytotoxicity of AgNPs.
Stress has been reported to be a causative factor for male infertility. Withania somnifera has been documented in Ayurveda and Unani medicine system for its stress-combating properties. However, limited scientific literature is available on this aspect of W. somnifera. We undertook the present study to understand the role of stress in male infertility, and to test the ability of W. somnifera to combat stress and treat male infertility. We selected normozoospermic but infertile individuals (N = 60), further categorized in three groups: normozoospermic heavy smokers (N = 20), normozoospermics under psychological stress (N = 20) and normozoospermics with infertility of unknown etiology (N = 20). Normozoospermic fertile men (N = 60) were recruited as controls. The subjects were given root powder of W. somnifera at a rate of 5 g/day for 3 months. Measuring various biochemical and stress parameters before and after treatment, suggested a definite role of stress in male infertility and the ability of W. somnifera to treat stress-related infertility. Treatment resulted in a decrease in stress, improved the level of anti-oxidants and improved overall semen quality in a significant number of individuals. The treatment resulted in pregnancy in the partners of 14% of the patients.
The present investigation was undertaken to assess the role of Mucuna pruriens in infertile men who were under psychological stress. Study included 60 subjects who were undergoing infertility screening and were found to be suffering from psychological stress, assessed on the basis of a questionnaire and elevated serum cortisol levels. Age-matched 60 healthy men having normal semen parameters and who had previously initiated at least one pregnancy were included as controls. Infertile subjects were administered with M. pruriens seed powder (5 g day−1) orally. For carrying out morphological and biochemical analysis, semen samples were collected twice, first before starting treatment and second after 3 months of treatment. The results demonstrated decreased sperm count and motility in subjects who were under psychological stress. Moreover, serum cortisol and seminal plasma lipid peroxide levels were also found elevated along with decreased seminal plasma glutathione (GSH) and ascorbic acid contents and reduced superoxide dismutase (SOD) and catalase activity. Treatment with M. pruriens significantly ameliorated psychological stress and seminal plasma lipid peroxide levels along with improved sperm count and motility. Treatment also restored the levels of SOD, catalase, GSH and ascorbic acid in seminal plasma of infertile men. On the basis of results of the present study, it may be concluded that M. pruriens not only reactivates the anti-oxidant defense system of infertile men but it also helps in the management of stress and improves semen quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.