Background Development of emergency department (ED) triage systems that accurately differentiate and prioritize critically ill from stable patients remains challenging. We used machine learning models to predict clinical outcomes, and then compared their performance with that of a conventional approach—the Emergency Severity Index (ESI). Methods Using National Hospital and Ambulatory Medical Care Survey (NHAMCS) ED data, from 2007 through 2015, we identified all adult patients (aged ≥ 18 years). In the randomly sampled training set (70%), using routinely available triage data as predictors (e.g., demographics, triage vital signs, chief complaints, comorbidities), we developed four machine learning models: Lasso regression, random forest, gradient boosted decision tree, and deep neural network. As the reference model, we constructed a logistic regression model using the five-level ESI data. The clinical outcomes were critical care (admission to intensive care unit or in-hospital death) and hospitalization (direct hospital admission or transfer). In the test set (the remaining 30%), we measured the predictive performance, including area under the receiver-operating-characteristics curve (AUC) and net benefit (decision curves) for each model. Results Of 135,470 eligible ED visits, 2.1% had critical care outcome and 16.2% had hospitalization outcome. In the critical care outcome prediction, all four machine learning models outperformed the reference model (e.g., AUC, 0.86 [95%CI 0.85–0.87] in the deep neural network vs 0.74 [95%CI 0.72–0.75] in the reference model), with less under-triaged patients in ESI triage levels 3 to 5 (urgent to non-urgent). Likewise, in the hospitalization outcome prediction, all machine learning models outperformed the reference model (e.g., AUC, 0.82 [95%CI 0.82–0.83] in the deep neural network vs 0.69 [95%CI 0.68–0.69] in the reference model) with less over-triages in ESI triage levels 1 to 3 (immediate to urgent). In the decision curve analysis, all machine learning models consistently achieved a greater net benefit—a larger number of appropriate triages considering a trade-off with over-triages—across the range of clinical thresholds. Conclusions Compared to the conventional approach, the machine learning models demonstrated a superior performance to predict critical care and hospitalization outcomes. The application of modern machine learning models may enhance clinicians’ triage decision making, thereby achieving better clinical care and optimal resource utilization. Electronic supplementary material The online version of this article (10.1186/s13054-019-2351-7) contains supplementary material, which is available to authorized users.
Key Points Question Do machine learning approaches improve the ability to predict clinical outcomes and disposition of children at emergency department triage? Findings In this prognostic study of a nationally representative sample of 52 037 emergency department visits by children, machine learning–based triage models had better discrimination ability for clinical outcomes and disposition compared with the conventional triage approaches, with a higher sensitivity for the critical care outcome and higher specificity for the hospitalization outcome. Meaning Machine learning may improve the prediction ability of triage approaches and could be used to reduce undertriage of critically ill children and to improve resource allocation in emergency departments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.