Salinity energy generation (SEG) studies have only been done under isothermal conditions at ambient temperature. The production of salinity energy can be improved under non-isothermal conditions, albeit preserving the energy...
The influence of channel geometry on the ionic selectivity and ionic current rectification of soft nanochannels was numerically investigated. The nanochannels coated with polyelectrolyte layers (PELs) are termed as soft nanochannels. The asymmetric category of nanochannels, i.e., bullet-shaped, was considered in this study. When PEL is dense, the ionic partitioning effect cannot be ignored. To this end, through adopting a numerical approach using the finite element method, Poisson–Nernst–Planck and Navier–Stokes equations were solved at steady-state conditions by considering different values of permittivity, diffusivity, and dynamic viscosity for the PEL and the electrolyte. The results show that the PEL–electrolyte property difference leads to a significant improvement of the rectification behavior, especially at low and moderate salt concentrations. This not only highlights the importance of considering different properties for the PEL and the electrolyte but also implies that the rectification behavior of soft nanochannels/nanopores may be improved considerably by utilizing denser PELs. Considering a charge density of [Formula: see text] and a bulk concentration of [Formula: see text], we demonstrate that the rectification factors for the bullet nanochannels, from [Formula: see text] by ignoring the ion partitioning effect, can reach the values of [Formula: see text] by considering the ion partitioning effect, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.