Early pregnancy loss (EPL), also termed early miscarriage, is determined as the unintentional expulsion of an embryo or fetus prior to the 12th week of gestation. EPL frequency is ~15% in pregnancies. Fetal development and growth is associate with placental function and vessel development; therefore, the placental genome would represent a useful miscarriage model for (epi)genetic and genomic studies. An important factor of placental development and function is epigenetic regulation of gene expression. microRNAs (miRNAs) are the primary epigenetic regulators which have an important role in placental development and function. In the present study, maternal plasma and villous tissue were collected from 16 EPL cases in 6th-8th gestational weeks (GWs) and 8 abortions (control group) in 6th-8th GWs. Detection of the differences in miRNA expression was performed using microarrays and dysregulated miRNAs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miRNA microarray findings revealed that four miRNAs, including hsa-miRNA (miR)-125a-3p, hsa-miR-3663-3p, hsa-miR-423-5p and hsa-miR-575 were upregulated in tissue samples. In maternal plasma, two miRNAs (hsa-let-7c, hsa-miR-122) were upregulated and one miRNA (hsa-miR-135a) was downregulated. A total of 6 out of 7 dysregulated miRNAs were validated using RT-qPCR. The target genes of these dysregulated miRNAs were detected using the GeneSpring database. The aim of the present study was to detect dysregulated miRNAs in maternal plasma and villous cells and identify the target genes of dysregulated miRNAs and their associated pathways. The target gene analyses have revealed that the affected genes are primarily associated with cell migration, proliferation, implantation, adhesion, angiogenesis and differentiation and all are involved with EPL pathogenesis. Therefore, the present study may contribute to the understanding of the molecular mechanisms which lead to EPL.
The aim of this prospective cohort study was to identify altered biologic processes in the endometrium that may be potential markers of receptive endometrium in patients with repeated implantation failure (RIF) as compared with fertile controls. The study was conducted in a university-affiliated in vitro fertilization (IVF) gynecology clinic and molecular biology and genetics laboratory. Healthy fertile controls (n = 24) and patients with RIF (n = 24) were recruited. Window of implantation gene profiling associated with RIF was performed. Six hundred forty-one differentially expressed genes were identified, and 44 pathways were found enriched. Upon clustering of the enriched pathways, 9 representative pathways were established. The important pathways that were identified included circadian rhythm, pathways in cancer, proteasome, complement and coagulation cascades, citrate cycle, adherens junction, immune system and inflammation, cell cycle, and renin-angiotensin system. The involvement of the circadian rhythm pathway and other related pathways may alter the endometrium's functioning to ultimately cause RIF. Furthermore, we found that the pathogenesis of RIF was multifaceted and that numerous processes were involved. We believe that a better understanding of the underlying mechanisms of RIF will ultimately give rise to better treatment opportunities and to better outcomes in IVF.
Genetic polymorphism is considered to be associated with human physical performance. The angiotensin I-converting enzyme insertion/deletion (ACE I/D) and the α-actinin-3 gene (ACTN3) R577X polymorphisms have been widely investigated for such associations, and functional ACE I/D and ACTN3 R577X polymorphisms have been associated with sprinter performance. The aim of this study was to determine the effect of these polymorphisms on sport performance among 37 elite athletes and 37 healthy controls. The ACE II genotype was identified in 32.43% of the control group and 8.11% of elite athletes, the DD genotype in 37.84% of the control group and 51.35% of the elite athletes, and the ID genotype in 29.73% of the control group and 40.54% of the elite athletes. With regard to the ACTN3 gene, the XX genotype, which confers an advantage for endurance activities, was identified in 10.81% of the control group and 35.14% of the elite athletes. The XX genotype was observed more frequently than the RR genotype (advantageous for sprinting), which was identified in 2.70% of the control group and 10.81% of elite athletes. The RX genotype (observed in 86.48% of the control group and in 54.05% of the elite athletes) was the most common genotype of the individuals in the present study. The study showed that ACTN3 and ACE gene polymorphisms have an effect on muscle power; however, larger studies are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.