Tumor metastasis is the most common cause of cancer death. Elucidation of the mechanism of tumor metastasis is therefore important in the development of novel, effective anti-cancer therapies to reduce cancer mortality. Interaction between cancer cells and surrounding stromal cells in the tumor microenvironment is a key factor in tumor metastasis. Using a co-culture assay system with human prostate cancer LNCaP cells and primary human prostate stromal cells, we identified epithelial membrane protein 1 (EMP1) as a gene with elevated expression in the cancer cells. The orthotopic injection of LNCaP cells overexpressing EMP1 (EMP1-LNCaP cells) into the prostate of nude mice induced lymph node and lung metastases, while that of control LNCaP cells did not. EMP1-LNCaP cells had higher cell motility and Rac1 activity than control LNCaP cells. These results were also observed in other lines of cancer cells. We newly identified copine-III as an intracellular binding partner of EMP1. Knockdown of copine-III attenuated the increased cell motility and Rac1 activity in EMP1-LNCaP cells. Reduced cell motility and Rac1 activity following knockdown of copine-III in EMP1-LNCaP cells were recovered by re-expression of wild-type copine-III, but not of a copine-III mutant incapable of interacting with EMP1, suggesting the importance of the EMP1–copine-III interaction. Phosphorylated and activated Src and a Rac guanine nucleotide exchange factor Vav2 were found to be involved in the EMP1-induced enhancement of cell motility and Rac1 activation. Moreover, EMP1 was highly expressed in prostate cancer samples obtained from patients with higher Gleason score. These results demonstrate that upregulation of EMP1 significantly increases cancer cell migration that leads to tumor metastasis, suggesting that EMP1 may play an essential role as a positive regulator of tumor metastasis.
The members of the family of epithelial membrane proteins (EMPs), EMP1, EMP2, and EMP3, possess four putative transmembrane domain structures and are composed of approximately 160 amino acid residues. EMPs are encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. The GAS3/PMP22 family members play roles in cell migration, growth, and differentiation. Evidence indicates an association of these molecules with cancer progression and metastasis. Each EMP has pro- and anti-metastatic functions that are likely involved in the complex mechanisms of cancer progression. We have recently demonstrated that the upregulation of EMP1 expression facilitates cancer cell migration and invasion through the activation of a small GTPase, Rac1. The inoculation of prostate cancer cells overexpressing EMP1 into nude mice leads to metastasis to the lymph nodes and lungs, indicating that EMP1 contributes to metastasis. Pro-metastatic properties of EMP2 and EMP3 have also been proposed. Thus, targeting EMPs may provide new insights into their clinical utility. Here, we highlight the important aspects of EMPs in cancer biology, particularly invasiveness and metastasis, and describe recent therapeutic approaches.
The growth and progression of cancers are crucially regulated by the tumor microenvironment where tumor cells and stromal cells are mutually associated. In this study, we found that stomatin expression was markedly upregulated by the interaction between prostate cancer cells and stromal cells. Stomatin suppressed cancer cell proliferation and enhanced apoptosis in vitro and inhibited xenograft tumor growth in vivo. Stomatin inhibited Akt activation, which is mediated by phosphoinositide-dependent protein kinase 1 (PDPK1). PDPK1 protein stability was maintained by its binding to HSP90. Stomatin interacted with PDPK1 and interfered with the PDPK1–HSP90 complex formation, resulting in decreased PDPK1 expression. Knockdown of stomatin in cancer cells elevated Akt activation and promoted cell increase by promoting the interaction between PDPK1 and HSP90. Clinically, stomatin expression levels were significantly decreased in human prostate cancer samples with high Gleason scores, and lower expression of stomatin was associated with higher recurrence of prostate cancer after the operation. Collectively, these findings demonstrate the tumor-suppressive effect of stromal-induced stomatin on cancer cells. Significance: These findings reveal that interactions with stromal cells induce expression of stomatin in prostate cancer cells, which suppresses tumor growth via attenuation of the Akt signaling axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.