Observations of offshore freshened groundwater and saline groundwater discharge along continental shelves have important implications for water resources, ecosystem function, and the composition of the ocean, but they cannot be explained by basic theory. We show that these independent observations are linked and result from processes that drive variable‐density groundwater flow through the spatial heterogeneity that is ubiquitous in geologic formations. We use lithologic data to develop geostatistical models that mimic the architecture of coastal aquifers. Simulation of groundwater flow and salt transport through these random realizations shows that heterogeneity produces spatially complex subsurface salinity distributions that extend tens of kilometers offshore, even at steady state. The associated density gradients drive high saline groundwater circulation rates that cannot be predicted by equivalent homogeneous models. Results suggest that these phenomena may be common along continental shelves, potentially altering estimates of ocean chemical budgets and impacting coastal water management for future generations.
Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.
Sea‐level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low‐lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable‐density groundwater flow and salt transport in 3‐D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable‐density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real‐world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.
The mixing between fresh and saline groundwater in beach aquifers promotes biogeochemical transformations that affect nutrient fluxes to the coastal ocean. We performed variable-density groundwater flow and reactive transport simulations with geostatistical representations of sedimentary structure to understand the influence of heterogeneity on groundwater dynamics and denitrification in intertidal mixing zones. Ensemble-averaged simulation results show that heterogeneity can enhance mixing between fresh and saline groundwater and increase residence time, resulting in up to 80% higher nitrate removal relative to equivalent effective homogeneous aquifer sediment. Denitrification hotspots form in high permeability structures where DOC and nitrate are readily supplied by convergent flow. The results provide a physical explanation for the formation of denitrification hotspots observed in beach aquifers and illustrate for the first time the influence of sediment heterogeneity on rates and spatial patterns of biogeochemical processes in intertidal aquifers that are critical mediators of land-sea solute fluxes along world coastlines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.