Set of experiments has been developed to study existing runaway electrons in "Damavand" tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.
The concentration of some trace elements especially potassium calcium, manganese, copper and zinc in the arterial wall tissue for the aneurism patients was studied by PIXE (Proton Induced X-Ray Emission) analysis. Comparing the results with normal aortic wall tissues has been done. All the patients are in the age range of 40-60 years. The samples are derived from 15 patients by surgical operation. The results show the absence of manganese, and decreasing of potassium, Copper and Zinc in the aneurismal tissues. Change in copper concentration in the arterial wall is important in the breakdown of the elastic layer in the aneurism. Elevation of the Calcium and Iron in the aneurism tissues are obtained in the comparison with the control groups. Deficiency or elevation of some elements in the aneurism aorta can be encountered as an indicator in the biopsy analysis.
To find appropriate substitutions for the expensive plastics of A-150 and rexolite used in the construction of thick gas electron multiplier (THGEM)-based tissue-equivalent proportional counters, in the present work, the responses of a THGEM-based microdosimetric detector made of A-150 and rexolite and three others composed of plexiglas (PMMA), polyethylene and polystyrene plastics as the wall materials have been compared. Lineal energy distribution, frequency-averaged lineal energy, dose-averaged lineal energy, mean quality factor and dose-equivalent for 0.1, 1 and 10 MeV neutrons and also for 241Am-Be neutrons are calculated using Geant4 simulation toolkit. Frequency-averaged lineal energy, dose-averaged lineal energy, mean quality factor and dose-equivalent values for all plastics are found similar. In addition, the response of an indigenously constructed microdosemeter with PMMA walls is also measured for 241Am-Be neutrons. The experimental results are in good agreement with the simulation predictions. Conclusively, it was found that the three considered plastics can be used as good candidates instead of A-150 and rexolite plastics in fast neutron microdosimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.