Abstract-KNTU CDRPM is a cable driven redundant parallel manipulator, which is under investigation for possible high speed and large workspace applications. This newly developed mechanisms have several advantages compared to the conventional parallel mechanisms. Its rotational motion range is relatively large, its redundancy improves safety for failure in cables, and its design is suitable for long-time high acceleration motions. In this paper, collision-free workspace of the manipulator is derived by applying fast geometrical intersection detection method, which can be used for any fully parallel manipulator. Implementation of the algorithm on the Neuron design of the KNTU CDRPM leads to significant results, which introduce a new style of design of a spatial cable-driven parallel manipulators. The results are elaborated in three presentations; constant-orientation workspace, total orientation workspace and orientation workspace.
Dynamic analysis of parallel manipulators plays a vital role in the design and control of such manipulators. Closed-chain kinematic structure affects the dynamics formulations by several constraints. Therefore, especially for higher degrees of freedom manipulators, manipulation of implicit and bulky dynamics formulation looses the tractability of the analysis. In this paper, a methodology and some simplification tools are introduced to achieve explicit dynamics formulation for parallel manipulators. This methodology is applied for the dynamics analysis of the most celebrated parallel manipulator, namely Stewart-Gough platform. By avoiding any recursive or component-wise derivations, the resulting dynamics formulation provides more insight for designers, and can be much easier used in any model-based control of such manipulators. In order to verify the resulting dynamics equations, Lagrange method is used to derive and compare the manipulator mass matrix. This methodology can be further used to formulate the explicit dynamics of other parallel manipulators.
Abstract-This paper presents an approach to the control of the KNTU CDRPM using an integrated control scheme. The goal in this approach is achieving accurate trajectory tracking while assuring positive tension in the cables. By the proposed controller, the inherent nonlinear behavior of the cable and the target tracking errors are simultaneously compensated. In this paper asymptotic stability analysis of the close loop system is studied in detail. Moreover, it is shown that the integrated control strategy reduces the tracking error by 80% compared to that of a single loop controller in the considered manipulator. The closed-loop performance of the control topology is analyzed by a simulation study that is performed on the manipulator. The simulation study verifies that the proposed controller is not only promising to be implemented on the KNTU CDRPM, but also being suitable for other cable driven manipulators.
Abstract-This paper is devoted to the control of a cable driven redundant parallel manipulator, which is a challenging problem due the optimal resolution of its inherent redundancy. Additionally to complicated forward kinematics, having a wide workspace makes it difficult to directly measure the pose of the end-effector. The goal of the controller is trajectory tracking in a large and singular free workspace, and to guarantee that the cables are always under tension. A control topology is proposed in this paper which is capable to fulfill the stringent positioning requirements for these type of manipulators. Closed-loop performance of various control topologies are compared by simulation of the closed-loop dynamics of the KNTU CDRPM, while the equations of parallel manipulator dynamics are implicit in structure and only special integration routines can be used for their integration. It is shown that the proposed joint space controller is capable to satisfy the required tracking performance, despite the inherent limitation of task space pose measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.