Abstract-A dynamic optical code division multiple access (DOCDMA) communication system is proposed for high-bandwidth communication systems. An implementation of the system is proposed based on a fast tunable optical filter (TOF) in each encoder and decoder. This technique actively modulates the central wavelength of a TOF according to a functional code at the transmitter during the bit period before the transmission of the data. The system is modeled and analyzed taking into account multiple access interference (MAI), thermal noise, and phase-induced intensity noise (PIIN). The performance of this system is compared to that of a spectral amplitude coding system that uses either a Hadamard code or a modified quadratic congruence (MQC) code. The results show that the proposed DOCDMA system reduces the PIIN effect on the performance of the system and improves the bit error rate (BER) performance at a large number of users. Furthermore, it is found that when the effective power is large enough, the MAI becomes the main factor that limits system performance, whereas when the effective power is relatively low, both thermal noise and PIIN become the main limiting factors with thermal noise having the main influence.Index Terms-Multiple access interference, optical code division multiple access (CDMA), optical fiber communication systems, spectral amplitude coding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.