Fundamental diagram, a graphical representation of the relationship among traffic flow, speed, and density, has been the foundation of traffic flow theory and transportation engineering for many years. Underlying a fundamental diagram is the relation between traffic speed and density, which serves as the basis to understand system dynamics. Empirical observations of the traffic speed versus traffic density show a wide-scattering of traffic speeds over a certain level of density, which would form a speed distribution over a certain level of density. The main aim of the current research is to study on the distribution of traffic speed in different traffic conditions in the urban roads since the distribution of traffic speed is necessary for many traffic engineering applications including generating traffic in micro-simulation systems. To do so, the traffic stream is videotaped at various locations in the city of Budapest (Hungary). The recorded videos were analysed by traffic engineering experts and different traffic conditions were extracted from these recorded videos based on the predefined scenarios. Then their relevant speeds in that time interval were estimated with the so-called “g-estimator method” using the outputs of the available loop detectors among the videotaped locations. Then different parametric candidate distributions have been fitted to the speeds by Maximum Likelihood Estimation (MLE) method. Having fitted different parametric distributions to speed data, they were compared by three goodness-of-fit tests along with two penalized criteria (Akaike Information Criterion – AIC and Bayesian Information Criterion – BIC) in order to overcome the over-fitting problems. The results showed that the speed of traffic flow follows exponential, normal, lognormal, gamma, beta and chisquare distribution in the condition that traffic flow followed over-saturated congestion, under saturated flow, free flow, congestion, accelerated flow and decelerated flow respectively.
Automated vehicles (AVs) are one of the emerging technologies that can perform the driving task themselves. The market penetration of AVs is expected to get growth in the close future. Therefore, it is crucial to have an overall clue on how they play the role in the road transportation sector. Automation might be assumed to have a beneficial impact on many aspects related to road transportation. The current paper attempts to investigate this rough assumption by reviewing the literature on the potential effects of automated vehicles on road transportation. A comprehensive look at the overall potential effects of automated vehicles will show the entire picture, and not just a cropped portion of that, to the researchers, decision makers, and practitioners and helps them to identify the negative and positive effects as well as challenges and uncertainties towards this new technology. In this paper, literature findings on the potential effects of automated vehicles on traffic flow, pedestrians mobility, travel demand and travel pattern, safety and security, and energy consumption and emissions are reviewed and discussed. According to the literature, it is concluded that AVs, as their market penetration increases, promisingly improve the capacity of a road network, eliminates human driver errors, and provide better mobility for groups of people who are currently facing travel-restriction conditions. However, the long-term effects of AVs especially on energy consumption, emission, pedestrian interaction, safety and security has uncertainty due to the complexity of predicting the future mobility pattern.
Road traffic noise is one of the most relevant sources in the environmental noise pollution of the urban areas where dynamics of the traffic flow are much more complicated than uninterrupted traffic flows. It is evident that different traffic conditions would play the role in the urban traffic flow considering the dynamic nature of the traffic flow on one hand and presence of traffic lights, roundabouts, etc. on the other hand. The main aim of the current paper is to investigate the effect of different traffic conditions on urban road traffic noise. To do so, different traffic conditions have been theoretically generated by the Monte Carlo Simulation technique following the distribution of traffic speed in the urban roads. The “ASJ RTN-Model” has been considered as a base road traffic noise prediction model which would deal with different traffic conditions including steady and nonsteady traffic flow that would cover the urban traffic flow conditions properly. Having generated the vehicles speeds in different traffic conditions, the emitted noise (LWA) and subsequently the noise level at receiver (LA) were estimated by “ASJ RTN-Model.” Having estimated LWA and LA for each and every vehicle in each traffic condition and taking the concept of transient noise into account, the single event sound exposure levels (SEL) in different traffic conditions are calculated and compared to each other. The results showed that decelerated traffic flow had the lowest contribution, compared to congestion, accelerated flow, free flow, oversaturated congestion, and undersaturated flow by 16%, 14%, 12%, 12%, and 10%, respectively. Moreover, the distribution of emitted noise and noise level at receiver were compared in different traffic conditions. The results showed that traffic congestion had considerably the maximum peak compared to other traffic conditions which would highlight the importance of the range of generated noise in different traffic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.