Abstract-Growing interest in computational models based on natural phenomena with biologically inspired techniques in recent years have been tangible. The use of immune mechanisms in intrusion detection is promising. In [1] we proposed a new IDS model based on the Artificial Immune System (AIS) and a statistical approach. In this paper we are going to enhance that model in terms of detection speed and detection rate as well as overall overload. In contrast with the work in [1] here we do not use the concept of clonal selection and we use binary detector sets which leads to lower overload and therefore higher performance. The model is examined with DARPA data set which is famous among IDS researchers.Index Terms-Intrusion detection, artificial immune system, negative selection, data mining, network security.
Abstract-In recent years we have seen a very great interest in combining naturally inspired techniques with existing conventional approaches. In this study we combined Negative Selection theory, one of most important theories in AIS, and knowledge production rules to propose a novel IDS. To generate the detectors first we produced a set of basic rules using knowledge production techniques with the help of WEKA, next the new detectors was generated and matured inside negative selection module and the basic rules. After experimenting the proposed model using DARAP 1999 dataset, this model showed a good performance compared to our previous models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.