It is generally accepted that root canal treatment procedures should be confined within the root canal system. To achieve this objective the canal terminus must be detected accurately during canal preparation and precise control of working length during the process must be maintained. Several techniques have been used for determining the apical canal terminus including electronic methods. However, the fundamental electronic operating principles and classification of the electronic devices used in this method are often unknown and a matter of controversy. The basic assumption with all electronic length measuring devices is that human tissues have certain characteristics that can be modelled by a combination of electrical components. Therefore, by measuring the electrical properties of the model, such as resistance and impedance, it should be possible to detect the canal terminus. The root canal system is surrounded by dentine and cementum that are insulators to electrical current. At the minor apical foramen, however, there is a small hole in which conductive materials within the canal space (tissue, fluid) are electrically connected to the periodontal ligament that is itself a conductor of electric current. Thus, dentine, along with tissue and fluid inside the canal, forms a resistor, the value of which depends on their dimensions, and their inherent resistivity. When an endodontic file penetrates inside the canal and approaches the minor apical foramen, the resistance between the endodontic file and the foramen decreases, because the effective length of the resistive material (dentine, tissue, fluid) decreases. As well as resistive properties, the structure of the tooth root has capacitive characteristics. Therefore, various electronic methods have been developed that use a variety of other principles to detect the canal terminus. Whilst the simplest devices measure resistance, other devices measure impedance using either high frequency, two frequencies, or multiple frequencies. In addition, some systems use low frequency oscillation and/or a voltage gradient method to detect the canal terminus. The aim of this review was to clarify the fundamental operating principles of the different types of electronic systems that claim to measure canal length.
This paper considers the prioritised transmission of H.264 layered coded video over wireless channels. For appropriate protection of video data, methods such as prioritised forward error correction coding (FEC) or hierarchical quadrature amplitude modulation (HQAM) can be employed, but each imposes system constraints. FEC provides good protection but at the price of a high overhead and complexity. HQAM is less complex and does not introduce any overhead, but permits only fixed data ratios between the priority layers. Such constraints are analysed and practical solutions are proposed for layered transmission of data-partitioned and SNR-scalable coded video where combinations of HQAM and FEC are used to exploit the advantages of both coding methods. Simulation results show that the flexibility of SNR scalability and absence of picture drift imply that SNR scalability as modelled is superior to data partitioning in such applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.