Alluring optical and electronic properties have made organometallic halide perovskites attractive candidates for optoelectronics. Among all perovskite materials, inorganic CsPbX (X is halide) in black cubic phase has triggered enormous attention recently owing to its comparable photovoltaic performance and high stability as compared to organic and hybrid perovskites. However, cubic phase stabilization at room temperature for CsPbI still survives as a challenge. Herein we report all inorganic three-dimensional vertical CsPbI perovskite nanowires (NWs) synthesized inside anodic alumina membrane (AAM) by chemical vapor deposition (CVD) method. It was discovered that the as-grown NWs have stable cubic phase at room temperature. This significant improvement on phase stability can be attributed to the effective encapsulation of NWs by AAM and large specific area of these NWs. To demonstrate device application of these NWs, photodetectors based on these high density CsPbI NWs were fabricated demonstrating decent performance. Our discovery suggests a novel and practical approach to stabilize the cubic phase of CsPbI material, which will have broad applications for optoelectronics in the visible wavelength range.
Wearable and portable devices contribute to a rapidly growing emerging market for electronics and can find wide applications for wireless communications, multifunctional entertainments, personal healthcare monitoring, etc. [1][2][3][4][5] Typically, wearable devices with attractive attributes such as flexibility, long cruising time, and operation safety are highly desirable. [6][7][8][9][10][11] Recent advances in fields of power generation devices enable sustainable energy harvesting from the environment, such as solar energy, mechanical vibrations and frictions, biofluid and thermal energy from human body, and converted into electricity without external power sources, which introduces the concept of "self-powered" systems. [12][13][14][15][16][17] To realize continuous operation of the entire self-powered devices without interruption from surrounding conditions variation, such as insufficient solar illumination, fully integrated self-powered systems that consist of energy harvesting/conversion devices (e.g., solar cells, nanogenerators, biofuel cells), energy storage devices as intermediate energy storage units (e.g., rechargeable batteries, supercapacitors) and functional devices (e.g., sensors, transistors, biomedical implants) are highly desirable. [18] Planar supercapacitors with interdigitated electrodes constructed on single substrate emerged as one of the highly competitive energy storage devices to complement/replace batteries, offering merits of high power density, separator-free architectures for device miniaturization, and favorable operational safety without using flammable electrolytes. [19][20][21][22] Especially for integration with energy harvesting devices dealing with highly volatile energy input, particularly in wearable applications, supercapacitors possess an appealing capability to accommodate fast and high charging current fluctuation. [23][24][25][26] Although self-sufficient energy modules (e.g., photovoltaic-batteries, nanogenerator-supercapacitors) and selfpowered sensors (e.g., nanogenerator-sensors, battery-sensors) have been reported previously, [12,23,[26][27][28][29][30][31][32] to our best knowledge, demonstration of a fully integrated self-powered sensor system on flexible substrate implemented via additive printable strategy is rarely achieved, mainly due to the challenges on fabrication procedures compatibility and system integration of different device components.Wearable and portable devices with desirable flexibility, operational safety, and long cruising time, are in urgent demand for applications in wireless communications, multifunctional entertainments, personal healthcare monitoring, etc. Herein, a monolithically integrated self-powered smart sensor system with printed interconnects, printed gas sensor for ethanol and acetone detection, and printable supercapacitors and embedded solar cells as energy sources, is successfully demonstrated in a wearable wristband fashion by utilizing inkjet printing as a proof-of-concept. In such a "wearable wristband", the harvested so...
Apart from the high power conversion efficiencies (PCEs), [1][2][3] one of the most attractive features of ABX 3 (A = Cs, methylammonium (MA), and formamidinium (FA); B = Pb and Sn; and X = Cl, Br, and I) perovskites is the simplicity of fabrication. Perovskite thin films can be deposited through a variety of different techniques ranging from one-step [4][5][6][7][8] and two-step sequential methods, [9][10][11] vaporassisted solution processing, [12,13] and thermal gas-assisted evaporation. [9,[14][15][16][17][18] However, in a laboratory setting, one-step spin-coating remains the simplest and quickest route for high-quality perovskite layers. To improve film morphology, the spin-coating deposition has been optimized using solvent mixtures (e.g., dimethylformamide (DMF), dimethylsulfoxide (DMSO), γ-butyrolactone (GBL)), [19] and a variety of lead salt precursors. [20][21][22] Importantly, almost all currently reported All current highest efficiency perovskite solar cells (PSCs) use highly toxic, halogenated solvents, such as chlorobenzene (CB) or toluene (TLN), in an antisolvent step or as solvent for the hole transporter material (HTM). A more environmentally friendly antisolvent is highly desirable for decreasing chronic health risk. Here, the efficacy of anisole (ANS), as a greener antisolvent for highest efficiency PSCs, is investigated. The fabrication inside and outside of the glovebox showing high power conversion efficiencies of 19.9% and 15.5%, respectively. Importantly, a fully nonhalogenated solvent system is demonstrated where ANS is used as both the antisolvent and the solvent for the HTM. With this, state-of-the-art efficiencies close to 20.5%, the highest to date without using toxic CB or TLN, are reached. Through scanning electron microscopy, UV-vis, photoluminescence, and X-ray diffraction, it is shown that ANS results in similar mixed-ion perovskite films under glovebox atmosphere as CB and TLN. This underlines that ANS is indeed a viable green solvent system for PSCs and should urgently be adopted by labs and companies to avoid systematic health risks for researchers and employees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.