Spectroscopic studies of a &mgr;-1,1-hydroperoxo-bridged copper dimer are combined with SCF-Xalpha-SW molecular orbital calculations to describe the vibrational and electronic structure of the hydroperoxo-copper complex and compare it to that of previously studied peroxo-copper species. Four vibrational modes of the Cu(2)OOH unit in the resonance Raman and infrared spectra are assigned on the basis of isotope shifts: nu(O-O) = 892 cm(-)(1), nu(as)(Cu-O) = 506 cm(-)(1), nu(s)(Cu-O) = 322 cm(-)(1), and nu(O-H) = 3495 cm(-)(1). The 892 cm(-)(1) O-O stretch of the &mgr;-1,1-hydroperoxo-bridged copper dimer is 89 cm(-)(1) higher than that of the unprotonated complex. Resonance Raman profiles of the 892 cm(-)(1) O-O stretch are used to assign an electronic absorption band at 25 200 cm(-)(1) (epsilon = 6700 M(-)(1) cm(-)(1)) to a hydroperoxide pi-to-Cu charge transfer (CT) transition. This band is approximately 5000 cm(-)(1) higher in energy than the corresponding transition in the unprotonated complex. The pi-to-Cu CT transition intensity defines the degree of hydroperoxide-to-copper charge donation, which is lower than in the unprotonated complex due to the increased electronegativity of the peroxide with protonation. The lower Cu-O covalency of this hydroperoxo-copper complex shows that the high O-O stretching frequency is not due to increased pi-to-Cu charge donation but rather reflects the direct effect of protonation on intra-peroxide bonding. Density functional calculations are used to describe changes in intra-peroxide and Cu-O bonding upon protonation of the peroxo-copper complex and to relate these changes to changes in reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.