Neural stimulation has widespread applications in investigating brain functions, restoring impaired neural functions, and treating numerous neurological/psychiatric diseases. Use of infrared pulses to stimulate neurons (infrared neural stimulation) offers a direct and non-invasive technique. Recent research has demonstrated that transient heating associated with the absorption of infrared light by the local aqueous medium around the cell membrane can stimulate nerves. One mechanism for this stimulation is due to a thermally induced increase in the membrane electrical capacitance, which causes cell depolarization as well as action potential production under certain physiological conditions. A theoretical and computational model helps better understand the mechanism of thermally induced electrical capacitance changes and optimize the stimulus parameters. In this article, we develop the existing theoretical models for membrane electrical capacitance and its thermally induced changes. We improve the formulation of Gouy-Chapman-Stern theory by Genet et al. and Shapiro et al. with the addition of a diffuse layer to the electrical double layer and by modifying the relation of Stern layer capacitance, to calculate the membrane capacitive charge and capacitive current. We also present a new method to calculate the membrane electrical capacitance and the rate of its thermally induced changes. In our calculations, two new factors are considered including the temperature dependence of the surface charge density and the hydrophobic core dielectric constant of the lipid bilayer. Our developed model predicts rates of 0.3 and 0.26%/°C for the thermally induced capacitance changes of the artificial lipid bilayer under two different sets of conditions previously reported by Shapiro et al. and Carvalho-de-Souza et al., respectively. Our model is in very good agreement with the corresponding experimental values given by these groups. The presented model is also able to calculate the membrane capacitive currents and investigate the voltage dependence of this current.
Broadband antireflection layers have been fabricated by two dimensional (2D) photonic crystals (PCs) with tapered pillars on the Si substrate. These PCs have been produced by interference lithography and reactive ion etching (RIE) techniques. The effect of depth and the filling factor (FF) of the PCs on the reflectance magnitude and bandwidth has been investigated. The obtained reflectance was less than 1% in the broad spectral range from 400 to 2100 nm. Our numerical simulation shows the PC pillars slope has an essential effect in the reduction of the reflection. However, our results show that the existence of RIE grasses in the PCs, which are created in the RIE process, does not influence the performance of the antireflection layer. This leads to a simpler fabrication process.
A novel boomerang-like alumina based antireflective coating with ultra-low reflectance has been produced for light incidence angles form 0 up to 45°. Boomerang-like alumina nanostructures have been fabricated on the BK7 glass substrates by dip-coating and surface modification via hot water treatment. To achieve the lowest residual reflectance, the effect of dip-coating rate and hot-water temperature in the treatment process has been investigated and optimized. To further investigate the boomerang-like alumina nanostructure and extract its graded refractive index profile by fitting the measured reflectance spectrum with the simulated one, a simulation based on the finite-difference time-domain (FDTD) method has been performed. The average reflectance measured at normal incidence for double-sided coated BK7 glass substrates is only 0.3% in the visible spectral region. Considering both sides, the average reflectance of the substrate decreased in the spectral range of 400–700 nm down to 0.4% at incidence angles of 45° by applying the boomerang-like alumina antireflection coatings. The optimized single layer boomerang-like alumina coating on the curved aspheric lens exhibited a low average reflectance of less than 0.14% and an average transmittance of above 99.3% at normal incidence. The presented process is a simple and cost-effective route towards broadband and omnidirectional antireflection coatings, which have promising potential to be applied on substrates having large scales with complex geometric shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.