The flow around the ramp embedded in a pressurized tunnel is divided into various zones downstream of the ramp, including the cavity and the main zone of flow above the shear layer. Ramp angle and height are parameters that affect the flow characteristics such as cavity length, velocity, and pressure coefficient immediately downstream of the ramp. In this study, OpenFOAM open source software and RNG K-ε turbulence model were used to simulate the flow around the under pressure tunnel ramp. In order to investigate the effect of the ramp geometry on the flow in various relative air discharges 0<β<10, the range of height and the angle of the ramp as 5<θ<20 and 0.1<tr/d<0.4 were developed and simulated. The correlation coefficient between the numerical and experimental results for the relative cavity length is in the range of 0.9377≤R2≤0.9722 that indicates proper agreement between results. The result of the research shows that in both cases of fixed height of ramp and increasing ramp angle, and fixed angle of the ramp and increasing ramp height, the values of the cavity length and maximum turbulence intensity increase, and the minimum pressure values at the cavity zone bed are decreased. But in both cases, the sensitivity of the three mentioned parameters is higher than the ramp height increment.
In the present study, FLOW-3D software was used to simulate energy dissipation by a serrated-edge drop, downstream of this structure. For this purpose, 2, 3, and 4 serrations with two series of relative dimensions at the edge of the vertical drop, with a relative critical depth range of 0.2–0.35 were used for simulation. Then, using Artificial Neural Network (ANN), Support Vector Machine (SVM), and Gene Expression Program (GEP) methods, the accuracy of numerical models was evaluated. Results showed that increasing dimensions of the edges increased energy dissipation, and the highest and lowest energy dissipation was related to the models with 3 and 4 serrations, respectively, Compared to the edgeless state, the 4-edge model, with relative dimension of 0.1, increased energy dissipation by an average of 20%, and the 3-edge model, with relative dimension of 0.15, by an average of 69%. Results of energy dissipation prediction using ANN, SVM and GEP methods showed that although all three models have good accuracy for estimating energy dissipation, the accuracy of ANN method with RMSE of 0.0081 and R2 of 0.9938 in training phase and RMSE of 0.0125 and R2 of 0.9805 in testing phase, is higher than the other two methods.
Chute aerators have been largely used to reduce cavitation hazard in high head spillways. There is no definite turbulence model for simulating these devices in smooth spillways in spite of its importance in critical conditions. A simulation in two-phase air-water chute flow and its aerator with five different turbulence models (RNG, Standard and Realizable k–ε Models, SST and Standards k–ω Models) has been numerically investigated by Fluent software. Finite Volume and VOF methods were used for discretization of flow equations and free surface modeling. Flow depth, velocity and bottom pressure comparison were made along with the air cavity length determination by numerical, experimental and reference equations. The best model with the minimum value of error percentage for flow depth and velocity was RNG k–ε turbulence model. The realizable and RNG k–ε turbulence models showed better results for the pressure head at the bottom of the chute. The RNG k–ε model results for the jet length have a very slight difference with the experimental results. The length of the cavity is closely associated with the flow emergence angle θ’ over aerators. The bottom air concentration of spillway chute simulated by all the turbulence models, except for the RNG k–ε model, can be overestimated and therefore may affect the designing of aerator geometry.
Experiments have been carried out to study the effect of air injection on the wall pressures in the near field of deflectors placed in a duct. Various quantities of air have been injected just downstream of the ramps to form stationary air cavities. The variation of the cavity length has been studied as a function of the ratio of the volume of airflow to the water discharge. The wall pressure field in terms of the mean and fluctuating parts is presented. This study shows how air injection affects the wall pressure field from that without air injection. Information concerning wall pressures is expected to be useful in the design of deflectors in tunnels and spillways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.