The existing quicksands in the desert are among the problematic soils whose stabilization has been considered by experts. Emulsion bitumen is one of the environmentally friendly stabilizers of these sands. Also, the method of reinforcement with (fibers) has many advantages due to the increase in soilstrength in the same way and the formation of thickness in the soil mass. The aim of this study was to investigate the effect of polypropylene fibers and emulsion bitumen on improving sandy soil properties and the effect of freeze-thaw cycles on the behavior of soils stabilized by these two substances; For this purpose, samples of aeolian sand soil with 0%, 0.25%, 0.5%, 0.75% and 1% waste polypropylene fibers of 0, 5, 10, 15% bitumen emulsion were made and tested for California load-bearing capacity and uniaxial compressive strength. Also, to evaluate the effect of freeze-thaw cycle, the samples were subjected to uniaxial resistance test after enduring 3 and 7 freeze-thaw cycle. The results show that the addition of fibers and bitumen to the sand first increases the specific gravity and CBR and decreases from one percent onwards by increasing the fibers of these two parameters; It has compressive strength and ultimate strain with increasing fiber percentage; In general, increasing the percentage of fibers from 0to 1% on average increases the compressive strength by 91% and the final strain by 54% and increasing the percentage of bitumen from 5 to 15% on average increases the compressive strength by 4% and the final strain by 13%. In addition, the results show that the compressive strength of the samples decreases by an average of 15% and 19% after withstanding 3 and 7 freeze-thaw cycle, respectively; However, after enduring 3 and 7 freeze-thaw cycle, the compressive strength increases with increasing the percentage of fibers to 75%.
Mathematical optimization, also called mathematical programming, is the process by which the best answer (according to a set of criteria) is selected from a set of possible answers to a particular problem. Today, optimization problems are used in all quantitative fields such as computer science, engineering, operations research, economics, and more; one of the engineering disciplines in which optimization is very important is road and transportation engineering. Road repair is one of the most important componentsof pavement management that requires regular road inspection by road specialists. One of the most important measures to prevent failure is maintenance inspection; Assessment of the condition of road surfaces to ensure their performance, while the road still provides maximum safety for existing traffic, should be done to ensure timely and effective repair and reconstruction operations. But exactly when these inspections should take place and when they are effective is an issue that is addressed in this study. The aim of this study is to optimize the frequency of maintenance inspections for a high-traffic suburban road by optimizing the frequency of inspections with a certain degree of reliability; so, the breakage function was considered as a pavement condition index (PCI). The results show that in order to pave the suburban road with high traffic in order to perform the desired pavement with 95% reliability, 218 inspections should be carried out annually (on average once every two days).
One of the challenges of road construction is encountering soils with lack of required strength and durability. Nowadays, various stabilization techniques are applicable for improving the engineering properties of soils. In the present study, dune sand, as subgrade of pavements, was treated using various contents of fibrillating network (FN) fiber and cement. Dune sand has low bearing capacity that makes it unsuitable for construction activities such as pavement applications. The common solution is improving the strength properties of dune sand so that it can be used for civil engineering projects. Stability of subgrade is very important since the layer provides the stability for the whole pavement structure and the upper layers, namely subbase, base, and asphalt layers. In this regard, compression strength and California bearing ratio (CBR) tests were carried out. Freezing-thawing cycle is one of the most important factors affecting the mechanical properties of soils. Several researchers reported that freezing-thawing cycle could change the physical and mechanical behaviours of soils. The influence of freezing and thawing (up to 18 cycles) on the properties of samples was also studied. Based on the results, the inclusion of FN-fiber to the sand led to increasing the ductility and compressive strength. Also, the addition of cement reduced the ductility, and increased the compressive strength. By increasing the freezing-thawing cycles, the soil strength significantly decreased. Results showed that the stabilized sand soil as subgrade layer led to reducing the compressive strain under the applied wheel load, and therefore reduced the possibility of rutting failure of subgrade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.