In this study, based on parametric excitation originating from airflow oscillation, a novel nonlinear aeroelastic energy harvester is proposed. In this respect, first, the governing equation of the system is derived and studied thoroughly to understand the direct and indirect effects of airflow oscillation on the local and global responses of the system. Then, by using a pseudo-arclength continuation method based on the harmonic balance method, the stable and unstable periodic and quasi-periodic responses of the system are tracked and analyzed. It is demonstrated that the proposed self-parametric (combination parametric and self-excitation) energy harvester can extract more power than the respective nonparametric system for a wide range of amplitudes and frequencies. The gained knowledge of parametric, aeroelastic systems is applicable for both aero-harvesters and other aeroelastic systems undergoing flow oscillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.