Transformation optics is a powerful tool to design various novel devices, such as invisibility cloak. Fantastic effects from this technique are usually accompanied with singular mappings, resulting in challenging implementations and narrow bands of working frequencies. Here in this article, Fabry-Pérot resonances in materials of extreme anisotropy are used to design various transformation optical devices that are not only easy to realize but also work well for a set of resonant frequencies (multiple frequencies). As an example, a prototype of a cylindrical concentrator is fabricated for microwaves.
We report the design of a new electromagnetic device with a new mapping function to have simultaneous electromagnetic concentration and rotation using a singular radial mapping. We implement such a device only by using alternating structure of zero index metamaterials and perfect electric conductors. Numerical simulations are performed to verify its functionality.
A microwave prototype of field concentrator was recently fabricated, based on the combination of transformation optics and Fabry-Pérot resonances. Perfect electric conductors used as design elements is however, impossible when the working frequencies go to infrared or optical frequencies. Here in this paper, we show that layered structure with alternating dielectrics of positive and negative permittivities can be used to design concentrators of similar function. A practical design with only two kinds of semiconductors is suggested. Theoretical analysis and numerical simulations are performed to verify the concentrating effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.