Traffic control prediction is one of the important issues of smart cities in that, by studying traffic parameters, there can be provided more peace and comfort in appropriate traffic routes. Combination of new and different technologies and scientific technical models for this complex prediction has always been paid attention to by researchers. In this paper, by presenting and improving one of the new methods of data collection with traffic congestion index, the appropriate models for predicting traffic control have been compared. Rapid and inexpensive collection of information and, the dynamics and momentary changes of traffic flows showed that the use of wavelet neural network was more accurate than other models of traffic control prediction. The application of combined Wavelet Neural Network with Complete Ensemble Empirical Mode Decompositionin traffic control prediction in this paper as CEEMD & WNN showed that the prediction accuracy increased compared to ARIMA, WNN, HYBRID ARIMA & WNN, TN methods and this new method has reasonable performance against the evaluation criteria to predict traffic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.