Cloud manufacturing (CMfg) is a new advanced manucatring model developed with the help of enterprise information technologies under the support of cloud computing, Internet of Things and service-based technologies. CMfg compose multiple manufacturing resources to provide efficient and valuable services. CMfg has a highly dynamic environment. In this environment, many disruptions or events may occur that lead the system to unplanned situations. In CMfg, a series of service providers are scheduled for production. During the production operation, some of them may be damaged, stopped, and out of service. Therefore, rescheduling is necessary for the continuation of the production process according to the concluded contracts and initial schedule. When any disruptions or other events occurred, the rescheduling techniques used to updating the inital schedule. In this paper, the dynamic rescheduling problem in CMfg is analyzed. Then the multi-objective rescheduling in CMfg is modeled and defined as a multi-objective optimization problem. Defining this problem as a multi-objective optimization problem provides the possibility of applying, checking and comparing different algorithms. For solving this problem, previous optimization methods have improved and a multi-objective and elitist algorithm based on the Jaya algorithm, called advanced multi-objective elitist Jaya algorithm (AMEJ) is proposed. Several experiments have been conducted to verify the performance of the proposed algorithm. Computational results showed that the proposed algorithm performs better compared to other multiobjective optimization algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.