This research deals with the numerical solution of non-linear fractional differential equations with delay using the method of steps and shifted Legendre (Chebyshev) collocation method. This article aims to present a new formula for the fractional derivatives (in the Caputo sense) of shifted Legendre polynomials. With the help of this tool and previous work of the authors, efficient numerical schemes for solving non-linear continuous fractional delay differential equations are proposed. The proposed schemes transform the nonlinear fractional delay differential equations to a non-delay one by employing the method of steps. Then, the approximate solution is expanded in terms of Legendre (Chebyshev) basis. Furthermore, the convergence analysis of the proposed schemes is provided. Several practical model examples are considered to illustrate the efficiency and accuracy of the proposed schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.