Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.
The potential ability of a new yeast strain, Pichia kudriavzevii, in the synthesis of zinc oxide nanoparticles (ZnO-NPs) through a green method was explored in this study. The effect of reaction time (12, 24 and 36 h) on the structure of the resulting ZnO nanoparticles was investigated. From the XRD and TEM results, the ZnO-NPs with a hexagonal wurtzite structure and a particle crystal size of ~10–61 nm was formed at different reaction times. Combing XRD, TEM, and PL results, it was revealed that the sample prepared at intermediate duration (24 h) has the most favorable nanosized structure with the lowest defect concentration. The biomedical properties of ZnO-NPs as free radical scavenging activity, cytotoxicity and antibacterial agents were characterized. Biosynthesized ZnO-NPs showed strong DPPH free radical scavenging and a dose dependent toxicity with non-toxic effects on Vero cells for concentrations below 190 µg/mL. Desirable bactericidal activity was shown by the ZnO-NPs on Gram-positive bacteria (Bacillus subtilis, Staphylococcus epidermidis and Staphylococcus aurous) and Gram-negative bacteria (Escherichia coli and Serratia marcescens). A maximum inhibition zone of ~19 mm was observed for Staphylococcus epidermidis at a concentration of 100 µg/mL for sample prepared at 24 h. The results from this study reveal that ZnO-NPs possesses potential for many medical and industrial applications.
Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G1 phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
BackgroundIn recent years, bacterial nanocellulose (BNC) based nanocomposites have been developed to promote healing property and antibacterial activity of BNC wound dressing. Molecular study can help to better understanding about interaction of genes and pathways involved in healing progression.ObjectivesThe aim of this study was to prepare bacterial nanocellulose/silver (BNC/Ag) nanocomposite films as ecofriendly wound dressing in order to assess their physical, cytotoxicity and antimicrobial properties. The in vitro molecular study was performed to evaluate expression of genes involved in healing of wounds after treatment with BNC/Ag biofilms.Study design, materials, and methodsSilver nanoparticles were formed by using Citrullus colocynthis extract within new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Besides, swelling property and Ag release profile of the nanocomposites were studied. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was studied. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR.ResultsSpherical silver nanoparticles with particle size ranging from 20 to 50 nm were synthesized and impregnated within the structure of BNC. The resulting nanocomposites showed significant antibacterial activities with inhibition zones ranging from 7±0.25 to 16.24±0.09 mm against skin pathogenic bacteria. Moreover, it was compatible with human fibroblast cells (HDF) and could promote in vitro wound healing after 48h. Based on bioinformatics databases, the genes of TGF-β1, MMP2, MMP9, CTNNB1, Wnt4, hsa-miR-29b-3p and hsa-miR-29c-3p played important role in wound healing. The nanocomposites had an effect in expression of the genes in healing. Thus, the BNC/Ag nanocomposite can be used to heal wound in a short period and simple manner.ConclusionThis eco-friendly nanocomposite with excellent antibacterial activities and healing property confirming its utility as potential wound dressings.
BackgroundMolecular investigation of wound healing has allowed better understanding about interaction of genes and pathways involved in healing progression.ObjectivesThe aim of this study was to prepare magnetic/bacterial nanocellulose (Fe3O4/BNC) nanocomposite films as ecofriendly wound dressing in order to evaluate their physical, cytotoxicity and antimicrobial properties. The molecular study was carried out to evaluate expression of genes involved in healing of wounds after treatment with BNC/Fe3O4 films.Study design, materials, and methodsMagnetic nanoparticles were biosynthesized by using Aloe vera extract in new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Moreover, swelling property and metal ions release profile of the nanocomposites were investigated. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was examined. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR.ResultsSpherical magnetic nanoparticles (15–30 nm) were formed and immobilized within the structure of BNC. The BNC/Fe3O4 was nontoxic (IC50>500 μg/mL) with excellent wound healing efficiency after 48 hours. The nanocomposites showed good antibacterial activity ranging from 6±0.2 to 13.40±0.10 mm against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. The effective genes for the wound healing process were TGF-B1, MMP2, MMP9, Wnt4, CTNNB1, hsa-miR-29b, and hsa-miR-29c with time dependent manner. BNC/Fe3O4 has an effect on microRNA by reducing its expression and therefore causing an increase in the gene expression of other genes, which consequently resulted in wound healing.ConclusionThis eco-friendly nanocomposite with excellent healing properties can be used as an effective wound dressing for treatment of cutaneous wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.